

CPSC 327: Data Structures and Algorithms • Spring 2024 153

Algorithmic Paradigms Wrapup

Key points –

• how to apply the n-step algorithm development processes
for iterative, greedy, divide-and-conquer, recursive
backtracking, dynamic programming
– especially how the common patterns (process input, produce

output, narrowing the search space) apply to and provide
structure and direction for the main steps / general case and
correctness arguments (loop invariant, maintaining the invariant)

CPSC 327: Data Structures and Algorithms • Spring 2024 154

Algorithmic Paradigms Wrapup

Key points –

• what a rigorous argument of correctness looks like, and
the ability to assess your own solution
– be able to identify and construct an appropriate loop invariant
– understand the form of the establish and maintain steps

• iterative – explain why the process results in the loop invariant holding
• recursive – explain why the process results in the correct subproblem

solution

– understand the form of the final result step
• iterative – explain why the loop invariant being true when the loop exits

means that the final result of the algorithm is correct
• recursive – explain why the correct answer for the initial subproblem

means that the final result of the algorithm is correct

– detect and avoid the trap of claiming that the answer is correct
because the process is right

• instead, must explain why the process results in the correct answer

CPSC 327: Data Structures and Algorithms • Spring 2024 155

Algorithmic Paradigms Wrapup

Key points –

• the role and use of examples and counterexamples in
figuring out the algorithm and arguing correctness

CPSC 327: Data Structures and Algorithms • Spring 2024 156

Algorithmic Paradigms Wrapup

Key points –

• key building blocks
– sorting is O(n log n) – what algorithms achieve that,

applicability/tradeoffs
– search – sequential search vs binary search (running time,

applicability)
– core ADTs, main implementations of those ADTs, and their

running times – how quickly can common operations be done,
applicability/tradeoffs

• where it is productive to look for improvements
– in data structures
– in algorithms

CPSC 327: Data Structures and Algorithms • Spring 2024 157

Improvement Techniques

Algorithmic strategies –

• try a different paradigm
• improvements within a paradigm

• heuristics and randomization

Implementation strategies –

• better data structures

CPSC 327: Data Structures and Algorithms • Spring 2024 158

Improvement Techniques

Try a different paradigm –

• divide-and-conquer typically looks to improve a
polynomial-time brute force
– applies when the input can be split and processed as

independent subproblems

• when building the solution is formulated as a series of
choices...
– recursive backtracking is exponential
– dynamic programming is often polynomial or pseudopolynomial
– greedy is typically polynomial

...but whether dynamic programming is effective or
greedy can be used depends on the nature of the
problem

CPSC 327: Data Structures and Algorithms • Spring 2024 159

Improvement Techniques

Improvements within a paradigm –

• greedy

– speed up making the next greedy choice
• when the choice is about which input item to process or select for the

output next, sort first – O(n log n) to sort (before the loop), but then O(1)
for each choice

• PQ/heap for repeated “find best” in a dynamic environment – O(n) to build
heap from all elements, O(log n) for each choice

– try a different pattern
• e.g. process input vs produce output

CPSC 327: Data Structures and Algorithms • Spring 2024 160

Improvement Techniques

Improvements within a paradigm –

• divide-and-conquer

– address the split/combine step
• if the combine step involves computation, can the friends return that

instead?

– address the number of problems and the size of the problems
• pass fewer total elements to friends

– adopt a narrowing the search space approach where elements are eliminated
and not handed to the friends

• more smaller problems
– e.g. bucket sort, shuffle sort, counting sort, radix sort

CPSC 327: Data Structures and Algorithms • Spring 2024 161

Improvement Techniques

Improvements within a paradigm –

• recursive backtracking

– reduce the branching factor
– reduce the solution length (number of decisions)

– pruning
– branch-and-bound

• tighter bound and initial solution estimates
• search more promising branches first – best first search + A*

CPSC 327: Data Structures and Algorithms • Spring 2024 162

Improvement Techniques

Improvements within a paradigm –

• dynamic programming

– reduce the number of different subproblems
• need (substantially) fewer states than partial solutions
• reducing the number of states often requires some way of ordering the

decisions

– reduce how much work is done per subproblem
• reduce the number of next choices for a decision
• representation is a factor – how quickly a subproblem solution can be

looked up (which is really how quickly a subproblem can be turned into an array index)

CPSC 327: Data Structures and Algorithms • Spring 2024 165

Strategies for Improvement

Heuristic and randomized algorithms and data structures
generally perform well but can have poor worst-case
performance.

• bucketing performs well when the distribution of data is
roughly uniform
– e.g. hashtables – generally O(1)
– e.g. bucket sort – generally Θ(n) when k = Θ(n)

• distribute elements into k buckets based on key ranges
• sort each bucket e.g. with insertion sort
• O(n+n2/k+k) on average, O(n2) worst case with insertion sort

– if input distribution is not uniform but is known or can be estimated, can
choose buckets with constant density to maintain O(n) average performance

CPSC 327: Data Structures and Algorithms • Spring 2024 166

Strategies for Improvement

• randomization “fixes” worst cases by making them
unlikely, and often result in much simpler algorithms
– e.g. randomized quicksort – sorted/reverse sorted are no longer

the worst cases
– e.g. splay trees

•

• Las Vegas algorithms guarantee correctness and are
usually efficient
– random selection methods

• e.g. randomized quicksort
• e.g. randomized hashing – randomly pick hash function from a collection

• Monte Carlo algorithms guarantee efficiency and are
usually correct
– random sampling methods

• e.g. to approximate median, find median of a small random sample of
elements

CPSC 327: Data Structures and Algorithms • Spring 2024 167

Strategies for Improvement

Improve the data structure –

• e.g. O(n2) selection sort becomes O(n log n) heapsort
– speed up “repeatedly find smallest” step

• e.g. O(n2) insertion sort becomes O(n log n) with balanced
BST
– speed up “insert into sorted collection” step

Implementation design strategy –

• start with an ADT
– e.g. instead of “use a hashtable” or “put everything into a

balanced BST”, identify “this is a lookup problem”

• then consider how to support those operations
– is there a standard ADT and implementation that is efficient for

everything needed?
– if not, design your own

CPSC 327: Data Structures and Algorithms • Spring 2024 168

Beyond Big-Oh

• big-Oh isn't enough to distinguish between algorithms of
the same complexity
– then implementation and system details (e.g. cache

performance, memory size) become important
→ implement and test!

• for very large datasets, constant factors are important
even for low complexity (O(n), O(n log n)) algorithms
– e.g. external sorting

