

Reductions, NP-Completeness, and
Dealing with Hard Problems

CPSC 327: Data Structures and Algorithms • Spring 2024 2

Doing Better

We often ask “can we do better?” – or “how do we do
better?”

But – is it possible to do better?

A key strategy involves reductions.

CPSC 327: Data Structures and Algorithms • Spring 2024 3

Reductions

Three ingredients:

• turn an instance of your problem into an instance of the
other problem

• solve the other problem
• turn the solution for the other problem into a solution for

your problem

Specifying a reduction means specifying the first and third
steps.

(“The other problem” is something with a known algorithm or a
known running time.)

CPSC 327: Data Structures and Algorithms • Spring 2024 4

Reductions

Two main applications –

• finding an algorithm for a new problem
•

• proving hardness
– so you don't waste time trying to find an efficient algorithm when

there isn't one
– understanding what makes a problem time consuming to solve

(i.e. hard) can help with trying to find a better way to address it

(in the sense of the time required to solve the problem)

CPSC 327: Data Structures and Algorithms • Spring 2024 5

Polynomial-Time Reductions

• turn an instance of your problem into
an instance of the other problem

• solve the other problem
• turn a solution to the other problem

into a solution to your problem

The reduction should be as efficient as possible.
• exponential time isn't efficient
• for an algorithm, an exponential-time reduction to a

polynomial-time task doesn't help
• for hardness reductions, concluding that the problem

itself is hard means that the reduction can't be the source
of the exponential time

the time for the
first and third
steps is the time
for the reduction

CPSC 327: Data Structures and Algorithms • Spring 2024 6

Polynomial-Time Reductions

CPSC 327: Data Structures and Algorithms • Spring 2024 7

Reductions for Hardness

A reduced to B →
 - instance of A is turned into instance of B
 - B is solved
 - instance of B's solution is turned into
 instance of A's solution

•how to solve A?
• – reduce to B
• – some other algorithm

CPSC 327: Data Structures and Algorithms • Spring 2024 8

CPSC 327: Data Structures and Algorithms • Spring 2024 9

Graph Reductions

Modeling a problem as a graph problem often takes the
form of a reduction.

– (with a reduction, the “solve the other problem” step is a known
algorithm so the goal is to build a graph to use with a known
algorithm instead of building a graph and possibly also coming
up with a graph algorithm to find a solution in the graph)

CPSC 327: Data Structures and Algorithms • Spring 2024 10

Graph Reductions

A common pattern for graph reductions –

• vertices represent the things in the solution
• directed edges represent ordering constraints

– idea is that a (weighted) path in the graph corresponds to a
solution that respects the constraints

Another common pattern –

• vertices represent the things in the solution
• undirected edges represent the constraints

– an edge between two vertices means the vertices can't coexist in
the solution, no edge means they don't conflict

• e.g. coloring, independent set

– an edge between two vertices means the vertices are redundant
in the solution, no edge means both may be needed

• e.g. vertex cover

CPSC 327: Data Structures and Algorithms • Spring 2024 11

Longest Increasing Subsequence

Given a sequence S of numbers, find the longest
subsequence containing increasing numbers. The numbers
in the subsequence must occur in that order in S, but need
not be consecutive in S.

• observation – a subsequence is an ordered thing, sounds
like a path → solution-is-a-path pattern

• vertices – things in the solution
– the elements of S

• directed edges – ordering constraints between things
– connect elements S[i] and S[j] if S[j] > S[i] and j > i
– observation: the graph is a DAG (DAG = directed acyclic graph)

• legal solution
– a path in the graph corresponds to an increasing subsequence

• optimal solution
– the longest path in the graph (a DAG)

CPSC 327: Data Structures and Algorithms • Spring 2024 12

Longest Path in a DAG

We need an algorithm to find the longest path in a DAG.

A related problem –
Given a (weighted) DAG, find the longest path from vertex s
to all other vertices.

But this isn't quite our problem...
• we don't have a start vertex
• we want the longest of the longest paths – we don't know

the end vertex

Solution – adapt the graph.
• add vertices s, t to the longest increasing subsequence

graph
– connect s to every vertex
– connect every vertex to t

the longest path from s to t will contain
the longest path in the original graph

CPSC 327: Data Structures and Algorithms • Spring 2024 13

Longest Increasing Subsequence

The full solution, via reduction –

• build graph G
– vertices – the elements of S plus s, t
– directed edges

• connect vertices for S[i] and S[j] if S[j] > S[i] and j > i
• connect s to every vertex
• connect every vertex to t

• find longest path p from s to t in G
– G is a DAG

• no incoming edges for s or outgoing edges for t
• no cycles involving the other vertices because a cycle would require a

smaller value to follow a larger one

• drop s and t from p, then take the corresponding elements
from the remaining vertices in p to get the longest
increasing subsequence

CPSC 327: Data Structures and Algorithms • Spring 2024 14

Longest Increasing Subsequence

Running time?

• create graph
– O(n) vertices
– O(n2) edges

→ O(n2) total (assuming O(1) to add to graph)

• find the longest path from s to t
– topological sort from s followed by visiting the vertices in reverse

order and setting dist[v] = max { dist[u]+wvu | (u,v) ∊ E }
→ O(|V|+|E|) = O(n+m)

• get the elements in the sequence from the longest path
→ O(n)

→ O(n2)
– (same as the dynamic programming solution)

CPSC 327: Data Structures and Algorithms • Spring 2024 15

Bigger-Is-Smarter Elephants

You have n elephants, each with weight, intelligence, and
value. Find the highest-value sequence of elephants such
that the elephants get smarter as they get bigger.

• legal solution
– subset of elephants e

1
, e

2
, …, e

m
 such that w

i
 < w

j
 and s

i
 < s

j

for i < j

• optimization goal
– maximize total value of elephants

Can we use a graph here too?
• “sequence” sounds like it could be a path…

CPSC 327: Data Structures and Algorithms • Spring 2024 16

Bigger-Is-Smarter Elephants

You have n elephants, each with weight, intelligence, and
value. Find the highest-value sequence of elephants such
that the elephants get smarter as they get bigger.

• vertices – things in the solution
– elephants

• directed edges – ordering constraints between things
– connect elephant i to elephant j if j is bigger and smarter than i

• other elements
– value of elephants → vertex weights

• legal solution
– a path in the graph corresponds to a legal ordering of elephants

• optimal solution
– max-weight vertex-weighted path in a DAG

CPSC 327: Data Structures and Algorithms • Spring 2024 17

Max-Weight Vertex-Weighted Path in a DAG?!

This isn't quite like the longest path in a DAG –
– vertex weights instead of edge weights
– don't have known start and end vertices

Adapt the graph slightly –

– handle lack of start/end vertices as before
• add source s connected to everything and sink t that all other vertices

connect to

– convert vertex weights to edge weights by pushing the weight
onto each outgoing edge

Now the longest path in a DAG algorithm can be used as is.

(that this works should be justified – think
about why, for a path in the graph, the sum
of the edge weights assigned according to
this scheme and the sum of the vertex
weights in the original graph are the same)

CPSC 327: Data Structures and Algorithms • Spring 2024 18

Bigger-Is-Smarter Elephants

Running time?

• create graph
– O(n) vertices
– O(n2) edges

→ O(n2) total (assuming O(1) to add to graph)

• find longest path from s to t
→ O(|V|+|E|) = O(n+m)

• get the sequence of elephants from the longest path
→ O(n)

→ O(n2)

CPSC 327: Data Structures and Algorithms • Spring 2024 19

Driving to Seattle

You want to drive from Boston to Seattle with the fewest
number of stops for gas. You can drive at most 400 miles
on a tank of gas.

• legal solution
– set of gas stations with no more than 400 miles between them

• optimization goal
– minimize the number of stops for gas

Does a graph reduction work here?
• solution is a sequence of stops → solution-is-a-path

pattern

CPSC 327: Data Structures and Algorithms • Spring 2024 20

Driving to Seattle

• vertices – things in the solution
– gas stations + Boston, Seattle

• directed edges – ordering constraints between pairs of
things
– between i and j if i, j are ≤ 400 miles apart and i comes before j

on the road

• legal solution
– a path in the graph corresponds to a particular sequence of

stops between Boston and Seattle

• optimal solution
– shortest path (in terms of number of vertices) from Boston to

Seattle
• observe that this is equivalent to the shortest path in terms of the number

of edges (number of edges in a path = number of vertices in the path - 1) →
unweighted shortest path

CPSC 327: Data Structures and Algorithms • Spring 2024 21

Driving to Seattle

Running time?

• create graph
– O(n) vertices
– O(n2) edges

→ O(n2) total (assuming O(1) to add to graph)

• find shortest unweighted path (breadth-first search)
→ O(|V|+|E|) = O(n+m)

• find the sequence of stops from the shortest path
→ O(n)

→ O(n2)
– (not as good as the greedy solution)

CPSC 327: Data Structures and Algorithms • Spring 2024 22

Movie Scheduling

There are two timeslots in which movies can be shown, and
each person wants to see two movies. Is there a way to
schedule the movies so that each movie is only shown once
but everyone gets to see both of their choices?

• observation – the goal is an assignment of labels
(timeslots) to things (movies) → vertex coloring

• vertices – things in the solution
– movies

• undirected edges – constraints
– can't schedule someone's two choices on the same day →

vertices = movies, edges = people
– edge (u,v) indicates that someone wants to see both u and v

• legal solution
– a 2-coloring (there are two timeslots)

CPSC 327: Data Structures and Algorithms • Spring 2024 23

Movie Scheduling #2

Each person has two choices for movies they'd like to see.
What's the fewest number of movies that the theater needs
to book so that everyone gets to see at least one of their
choices?

• observation – doesn't sound like a solution-is-a-path pattern…

• vertices – things in the solution
– either movies or people

• undirected edges – constraints
– don't need to book both of someone's choices → vertices =

movies, edges = people
– edge (u,v) indicates that someone wants to see both u and v

• legal solution
– vertex cover – edge between two vertices means that those

vertices are redundant (only need one to satisfy that person)

• optimal solution
– min vertex cover CPSC 327: Data Structures and Algorithms • Spring 2024 24

Other Reductions

Graph reductions are not the only possible reductions.

CPSC 327: Data Structures and Algorithms • Spring 2024 25

Subset Sum

Given a set of numbers, determine if there is a subset of the
numbers which sum to some target value t.

This reduces to the decision-problem version of 0-1
knapsack.

– 0-1 knapsack (decision version): is there a subset of items with
total weight at most W such that the total value is at least V?

Reduction:
– number i → item with value i and weight i
– capacity of pack W = t
– desired total value V = t

Solution:
– a subset with sum t exists if and only if the 0-1 knapsack

answer is yes
• since each item's weight is the same as its value, the only way to

have a total weight ≤ t and a total value ≥ t is for both to equal t
CPSC 327: Data Structures and Algorithms • Spring 2024 26

Longest Common Subsequence

Given sequences A and B, find the longest subsequence
common to both. The elements of the subsequence need
not be consecutive in A or B, but must appear in the same
order in both.

This reduces to edit distance –
– compute the edit distance between A and B with the cost of

insertions and deletions = 1 and the cost of substitutions = ∞
– longest common subsequence length = (|A|+|B|-edit distance)/2

(Delete everything in A not in the common subsequence,
and insert everything in B not in the common subsequence.
The only elements that incur no cost are those common to
both A and B, which are counted twice in |A|+|B|.)

CPSC 327: Data Structures and Algorithms • Spring 2024 27

Longest Increasing Subsequence

Given a sequence S of numbers, find the longest
subsequence containing increasing numbers. The numbers
in the subsequence must occur in that order in S, but need
not be consecutive in S.

This reduces to longest common subsequence –
– sort S (call this sequence T)
– find longest common subsequence of S and T

(T ensures that the common subsequence must also be
increasing. S ensures that the elements in the common
subsequence must appear in the proper order.)

CPSC 327: Data Structures and Algorithms • Spring 2024 28

Reductions for Algorithms

• can be helpful for solving a new problem
– provides another way of thinking about the problem which may

reveal new insights
– can provide a black box for solving the trickiest algorithmic part

• but may not be the most efficient way to solve the
problem
– e.g. driving to Seattle O(n) greedy algorithm if sorted, O(n log n) if

not → shortest path in a graph O(n2)

