Complexity

Some problems seem to be more difficult to solve efficiently than others.

- the obvious brute force algorithm often has very different running time for different algorithms
e.g. closest pair of points $-n^{2}$
- compute the distance for every pair
e.g. 0-1 knapsack - 2^{n}
- try every subset

Complexity

Some problems seem to be more difficult to solve efficiently than others.

- algorithmic techniques which work to speed up some problems don't work for others
e.g. greedy vs dynamic programming vs recursive backtracking

Complexity

Some problems seem to be more difficult to solve efficiently than others.

- small changes in a problem can make it much harder to solve
e.g. fractional knapsack vs 0-1 knapsack
- e.g. linear programming vs integer linear programming
- e.g. shortest path in a graph vs the longest
- (note: general graph, not limited to DAG)
e.g. use every edge once (Euler circuit) vs use every vertex once (hamiltonian cycle)

[^0]
Complexity

Are there some problems which take fundamentally longer to solve than others, or have we just not been clever enough yet to find an efficient solution?

[^1]
Famous Complexity Classes

\mathbf{P} - decision problems solvable by a deterministic Turing machine in polynomial time

NP - decision problems verifiable by a deterministic Turing machine in polynomial time

FP - function problems solvable by a deterministic Turing machine in polynomial time

FNP - function problems verifiable by a deterministic Turing machine in polynomial time

[^2]
Turing Machines

A Turing machine is a theoretical machine consisting of: - an infinite tape divided into cells

- a head that can read and write symbols on the tape, and move one cell left or right
a current state, which is one of a finite number of possible states
- a finite table which, given a current state and symbol on the tape, specifies an action (erase or write symbol), a movement (left, right, or stay), and a new state

Decision Problems vs Function Problems

Decision problems are problems where the result is a yes/no answer.
e.g. is there a solution to the 0-1 knapsack problem with total weight $\leq \mathrm{W}$ and total value $\geq \mathrm{V}$?

Function problems compute the result of a function.
e.g. 0-1 knapsack problem: maximize the total value such that the total weight $\leq \mathrm{W}$

Observation -

- a function problem can be solved efficiently given a black box for the corresponding decision problem
"efficiently" = logarithmic number of steps
- use one-sided binary search
(one-sided binary search for knapsack means trying $\mathrm{V}=2^{\prime}$ for $\mathrm{i}=0,1,2$,
until the answers are different for successive values of i, then repeating the process within the interval found to find a smaller interval, and so forth)
\qquad jorithms • Sping 2224

Deterministic vs Nondeterministic

A deterministic Turing machine has at most one rule that applies to a given state and symbol

A nondeterministic Turing machine may have multiple rules that apply to a given state and symbol.

[^3]
Famous Complexity Classes

\mathbf{P} - solvable by a deterministic Turing machine in
polynomial time
NP - verifiable by a deterministic Turing machine in
polynomial time
alternatively, solvable by a nondeterministic Turing machine in polynomial time

Key points -

- for NP, technically it is only "yes" solutions that are polynomial-time verifiable a "yes" answer reauries only a single instance that works (and is checkable in oolynomial time)
- in both cases, there are at morkst a polynomial number of choices to make in order to generate the solution
- for each choice -
- deterministic has rules to pick the right alternative
nondeterministic can be thought of as correctly guessing the right alternative

Famous Complexity Classes

\mathbf{P} - decision problems solvable by a deterministic Turing machine in polynomial time

NP - decision problems verifiable by a deterministic Turing machine in polynomial time

FP - function problems solvable by a deterministic Turing machine in polynomial time

FNP - function problems verifiable by a deterministic Turing machine in polynomial time

Famous Complexity Classes

- does NP include P? that is, is every problem in P also in NP? yes - if you can solve a problem in polynomial time, you can always verify a possible solution by computing the solution yourself and comparing
- are there problems in NP that aren't in P? probably
(proving this one way or the other will get you fame and a million dollars)
- are there problems that aren't in NP?
yes e.g. function problems (NP is only decision problems), the halting problem (undecidable)

CPSC 327: Data Stuctures and Algorithms • Spping 2 2ea

Famous Complexity Classes

- does FNP contain FP?
- yes
- are there problems in FNP that aren't in FP?
probably (for the same reason as there are probably problems in NP not in P)
- are there problems that aren't in FNP? yes - e.g. enumeration tasks (solution size can be exponential)

Famous Complexity Classes

- is FP easier or harder than P?
no - each can be used a black box to efficiently solve the other
problem A can't be easier than B if A can be used to efficiently solve
- the solution to the FP version can be used directly to answer the P version's question
- the P version can be used as a black box to find the FP solution in polynomial time using one-sided binary search
- is FNP easier or harder than NP?
[Bellare, Goldwasser 1994] under certain assumptions, there are FNP problems that are harder than their corresponding NP
problems i.e. there seem to be problems in FNP where a solution to
NP version can't be used to efficiently solve the FNP version

CPSC 327: Data Stucucures and Algorithms • Spring 2024

Reductions for Lower Bounds

Sorting can be reduced to convex hull -

- for each element i to be sorted, create a point (i, i^{2})
- compute the convex hull of the points (using an algorithm that outputs the hull points in cyclic order)
- read points on the hull from left to right, starting with the leftmost point in the hull this is the sorted order of the elements

the convex hull of a set of points is the shape of a rubber band stretched
n- those poin
Co 9
G 96
9 9
g 9 . 6

Read-out points

Determining Complexity

Reductions are useful for making arguments about complexity.

Let A be a problem with a polynomial-time reduction to B . i.e. polynomial time to turn an instance of A into an instance of B, and polynomial time to turn a solution for B into a solution for A
Then B is at least as hard as A. easy/hard has to do with Why?
if B has an efficient algorithm, A can be solved efficiently via the reduction
if B doesn't have an efficient algorithm, it may still be possible to solve A efficiently using a different approach - we don't know

CPSC 327: Data Strucurues and Aggorithms - Spring 2024

Reductions for Lower Bounds

Sorting can be reduced to convex hull -

- for each element i, create a point $\left(i, i^{2}\right)$
- compute the convex hull
(using an algorithm that outputs the hull points in cyclic order)
- read points on the hull from left to right, starting with the leftmost point in the hull

Since comparison-based sorting is known to take $\Omega(n \log n)$ time, the ?? step cannot be faster than $n \log n$ or else we'd have a better algorithm for sorting using convex hull.
\rightarrow convex hull (if the points on the hull are output in cyclic order) is $\Omega(n \log n)$

Completeness

Within a class, the complete problems are the hardest - if you can solve a complete problem, you can solve every problem in the class.

- P-complete - set of problems in P such that every other problem in P is polynomial-time reducible to one in the set these are problems believed to be "inherently sequential" i.e. a parallel computer would not significantly speed them up
- NP-complete - set of problems in NP such that every other problem in NP is polynomial-time reducible to one in the set

CPSC 327: Data Stucucures and Algoritms • Spring 2024

Karp's 21 NP-Complete Problems

clique
clique cover
vertex cover
is there a set of k vertices in the graph such that every vertex in the set is connected to every other vertex in the set?
can the graph be partitioned into k cliques?
chromatic number is there a set of k vertices in the graph such that every edge has at least one endpoint in the set?
feedback node is the graph be colored with k colors?
is there a set of k vertices in an undirected graph whose removal feedback arc set directed
hamiltonian cycle undirected hamiltonian cycle
max cut
Steiner tree leaves the graph without cycles?
is there a set of k edges in a directed graph whose removal leaves the graph without directed cycles?
is there a directed/undirected cycle which visits every vertex exactly once?
can the vertices of a graph be split into two sets so that the sum of the weights of the edges between vertices in different sets is at most k?
version of MST where additional points may be introduced to reduce the overall weight of the tree

Karp's 21 NP-Complete Problems

One of the first demonstrations that many common computational problems are computationally intractable. (1972)

Karp's 21 NP-Complete Problems

$\begin{array}{ll}\text { CNFSAT } & \text { is there an assignment of values to make a boolean expression with } \\ \text { only OR and NOT within a clause and clauses joined by AND true? }\end{array}$
3-SAT CNFSAT where there are exactly three variables per clause
binary integer linear programming where variables are constrained to the values 0 programming or 1
set packing in a collection of sets, is there a group of k that are disjoint?
covering given a collection of subsets of X, is there a group of k subsets that together contain every element of X ?
given a collection of subsets of X, is there a group of those subsets
exact cover such that every element of X is contained in exactly one subset?
hitting set given a collection of subsets of X, is there a subset H of X of size k so that every set in the collection contains at least one element of H ?
3-dimensional given a set of triples (x, y, z) where $x \in X, y \in Y, z \in Z$, is there a
matching collection of triples such that every element of X, Y, and Z occurs exactly once?
$0-1$ knapsack is there a set of items with total weight $\leq \mathrm{W}$ and total value $\geq \mathrm{V}$? parts are equal?
equencing an a so fore the no more miss their deadlines?

Proving NP-Completeness

Most NP-complete problems are proven NP-complete by a reduction to a known NP-complete problem.

> | If problem A has a polynomial-time reduction to problem B, which of the |
| :--- |
| following can you conclude? |
| if A is NP-complete, there can't be a |
| polynomial-time algorithm for B |
| if B is NP-complete, there can't be a |
| polynomial-time algorithm for A |
| none of the above |

[^0]: CPSC 237: Datas Strucures and Alooniths \cdot Soping 2024

[^1]: CPSC 327: Data Surucurus and Agorithms • Spring 2024

[^2]: CPSC 327: Data Stucurues and Algoritms • Sping 2024

[^3]: CPSC 327. Data Strucurues and Aloorthms - Soping 2024

