Proving NP-Completeness

Most NP-complete problems are proven NP-complete by a reduction to a known NP-complete problem.

```
If problem A has a polynomial-time reduction to problem B, which of the
following can you conclude?
if A is NP-complete, there can't be a
    polynomial-time algorithm for B
    if B is NP-complete, there can't be
    polynomial-time algorithm for A
    none of the above
```

CPSC 327: Data Strucures and Alooriths - Soring 2024

Reduction Example

Course scheduling -

Given a set of courses requested by each student, a set of time slots, and an integer k, determine if there is an assignment of courses to time slots with at most k conflicts amongst the students' schedules.

Is course scheduling NP-complete?

- we need a known NP complete problem to reduce to this problem

3-coloring

Determine if you can color a graph with three colors so tha no two adjacent nodes have the same color.
known to be NP-complete

Reduction Example

Course scheduling -

Given a set of courses requested by each student, a set of time slots, and an integer k, determine if there is an assignment of courses to time slots with at most k conflicts amongst the students' schedules.

Is course scheduling in NP?

- yes
- it is a decision problem (yes/no question)
- a 'yes' answer is verifiable in polynomial time - given an assignment of courses to time slots, one simply needs to go through each student's schedule and count conflicts

Is course scheduling NP-complete?
CPSC 327: Data Strucurues and Agorithms - Soring 2024

Reduction Example	remember that reducing A to B means that B is at least as hard as A B can't be easier than A, or else we'd have better algorithm for A aldeter A could be easier than B, because there may be another algorithm for A
Reduce an instance of 3-coloring to an	
instance of course scheduling:	
- vertices \rightarrow courses	

, vertices \rightarrow courses

- edges \rightarrow students
each student will have two requested courses, corresponding to the two vertices connected by the edge
- colors \rightarrow timeslots
- there will be three timeslots, corresponding to the three colors
- legal coloring $\rightarrow \mathrm{k}=0$
- an illegal 3-coloring means two adjacent nodes with the same color - this corresponds to a student whose courses are
scheduled in the same timeslot
a schedule with no conflicts thus means a legal 3-coloring
This construction only takes polynomial time.
- traverse the graph - $O(n)$ to create courses for n vertices, $O(m)$ to create students for medges, $O(1)$ to create three timeslots

Reduction Example

Thus, course scheduling is also NP-complete.
if course scheduling could be solved in polynomial time, so could 3-coloring
if 3-coloring can be solved in polynomial time, so can everything else in NP

Proving NP-Completeness

But how do you get a known NP-complete problem in the first place?

- need a direct proof!
[1971] Cook-Levin theorem proved SAT is NP-complete.
Idea:
SAT: is there an assignment of values to variables in a boolean expression so that the expression evaluates to TRUE?
- start with a nondeterministic Turing machine which solves some problem in NP
- for each possible input, build a boolean expression which is satisfiable if and only if the machine accepts the input (a "yes" response)

Solving satisfiability tells whether or not the machine accepts the input, so satisfiability cannot be easier than the NP problem. (And since this construction can be done for any NP problem, satisfiability cannot be easier than any NP problem.)

Direction of Reductions Matters!

A sudoku puzzle is an instance of an exact cover problem, meaning that sudoku can be reduced to exact cover.
exact cover: given a collection of subsets X, is there a group of those subsets such that every element of X is contained in exactly one subset?

Exact cover is NP complete.
Does this mean sudoku is NP complete too?
not necessarily - the hard problem (exact cover) can be used to solve sudoku, but
maybe there's some other way to solve
sudoku more efficiently
CPSC 327: Data Stucucures and Aggoithms • Spring 2024

Cook-Levin Details

- SAT is in NP because
- it is a decision problem
whether a given assignment of values actually satisfies the expression can be checked in polynomial time

Cook-Levin Details

Ingredients - building a boolean expression to represent the Turing machine's task

- boolean variables represent the state of the Turing machine as it executes its program


```
T
Qqk True if m is in state q at step k of the computation. O
        http://en.wikipedia.org/wiki/Cook-Levin_theorem
``` or reject an input
- polynomial function because it solves a problem in NP

\section*{Cook-Levin Details}

The transformation from Turing machine to instance of SAT is a polynomial-time reduction.
\(\mathrm{O}\left(\mathrm{p}(\mathrm{n})^{2}\right)\) variables
- \(\mathrm{O}\left(\mathrm{p}(\mathrm{n})^{3}\right)\) clauses

Transforming the SAT solution to a solution for the NP problem is \(\mathrm{O}(1)\).

Thus, if SAT could be solved in polynomial time, so could any problem in NP.

\section*{Cook-Levin Details}
- expressions involving those variables represent the machine's input, goal, program, and rules of operation
\begin{tabular}{|c|c|c|c|}
\hline Expression & Conditions & Interpretation & \[
\begin{aligned}
& \text { How } \\
& \text { many? }
\end{aligned}
\] \\
\hline Tjo & Tape cell \(i\) initially contains symbol \(j\) & Initial contents of the tape. For \(i>n-1\) and \(i<0\), outside of the actual input \(l\), the initial symbol is the special default/blank symbol. & Op(p)) \\
\hline oso & & unitial state of \(M\). & 1 \\
\hline Hoo & & Initial position of readwrite head. & 1 \\
\hline \(T_{j k} \rightarrow \rightarrow T_{j / k}\) & j*f & One symbol per tape cell. & \(O\left(p(n)^{2}\right)\) \\
\hline & j* \({ }^{\text {j }}\) & Tape remains unchanged unless written. & \(\mathrm{of}\left(\mathrm{P}(n)^{2}\right)\) \\
\hline \(Q_{q k} \rightarrow-Q_{q}{ }^{\prime}\) & \(q \neq q\) & Only one state at a time. & O(p(n) \\
\hline \(H_{i k} \rightarrow H_{i k}\) & \(i \neq 1\) & Only one head position at a time. & \(\bigcirc\left(p(n)^{3}\right)\) \\
\hline & \(k<p(n)\) & Possible transitions at computation step \(k\) when head is at position \(i\). & \(O\left(p(n)^{2}\right)\) \\
\hline \(\bigvee_{i \in F} Q_{\text {Pp }(n)}\) & & Must finish in an accepting state. & 1 \\
\hline \multicolumn{4}{|r|}{http://en.wikipedia.org/wiki/Cook-Levin_theorem} \\
\hline
\end{tabular}

\section*{Hardness}

Hard problems are at least as hard as the hardest problems in the class but may not be in the class itself.

NP-hard - set of problems that NP-complete problems can be reduced to
- all NP-complete problems are also NP-hard
- FNP versions of NP-complete problems are NP-hard
- there appear to be problems that are NP-hard but not NPcomplete
e.g. determining whether or not a given chess board configuration is checkmate

\section*{Common Myths}

NP problems require exponential time.
Probably yes.
But technically unknown, because P != NP hasn't been proven.
though it is generally thought that there are problems in NP that are not in P (and thus some problems in NP do require exponential time)

Also no, because there may be specific instances or classes of instances which can be solved in polynomial (or at least subexponential) time.
e.g. maximum independent set - NP-hard/complete in general, \(\mathrm{O}(\mathrm{n})\) for trees
e.g. longest path - NP-hard/complete in general, \(\mathrm{O}(\mathrm{n}+\mathrm{m})\) for DAGs

\section*{Common Myths}
\(P\) is good and NP is bad.

\section*{Not necessarily -}
- a polynomial-time algorithm may have large constant factors or exponents
- the exponential-time worst-case behavior may be rare e.g. simplex algorithm for linear programming
- you might not need to solve large input sizes

\section*{Common Myths}

NP-complete problems are difficult because the search space is so large. framed as a series of choices, the running time depends on branching factor, longest path

No, it's not the size of the search space as such, but that you have to look at so much of it.
compare to greedy - and even many dynamic programming algorithms these are also framed as a series of choices, but either only one option is needed for each choice (a branching factor of 1) or there are many repeated subproblems so
most branches can be pruned

CPSC 327: Datai Structures and Agooithms • Spring 2024

Harder than NP?

Are there any problems harder than NP?
Yes.
- e.g. Presburger arithmetic

\section*{Presburger Arithmetic}

Definition -
- contains constants 0 and 1 and the operator +
- axioms 1. \(\quad(0=x+1)\)
2. \(x+1=y+1 \rightarrow x=y\)
3. \(x+0=x\)
4. \(x+(y+1)=(x+y)+1\)
5. Let \(P(x)\) be a first-order formula in the language of Presburger arithmetic with a free variable \(x\) (and
possibly other tree variables) Then the
possilly other free variables). Then the following formula is an axiom
\((P(0) \wedge \forall x(P(x) \rightarrow P(x+1)) \rightarrow \forall y P(y)\).

Why is Presburger arithmetic interesting?
- it is decidable - an algorithm exists to determine if any given statement is derivable from the axioms
- the decision problem has worst-case runtime \(2^{2 \mathrm{cn}}\) for \(\mathrm{c}>0\)
- there are theorems of length \(n\) whose proofs have doubly exponential length
implies that there are computational limits on what can be proven by computer programs
CPSC 327: Data strucurues and Algorithms \(\cdot\) Sping 2024

\section*{Unknown Problems}

Are there problems whose hardness is unknown?
Yes.
Two examples -
- graph isomorphism
given two graphs \(G\) and \(H\), determine if there is mapping \(f\) from vertices of \(G\) to vertices of \(H\) such that if \((x, y)\) is an edge of \(G\),
\((f(x), f(y))\) is an edge of \(H\)
thought to be between P and NP-complete - can often be solved quickly in practice
- integer factorization
given integers \(n\) and \(m\), does \(n\) have a factor at most \(m\) ?
- known to be in both NP and co-NP, thought to not be in P or NPcomplete
primality testing is in P
CPSC 327: Data Strucurues and Aggorithms \(\cdot\) Sporing 2024```

