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Proving NP-Completeness

Most NP-complete problems are proven NP-complete by a 
reduction to a known NP-complete problem.
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Reduction Example

Course scheduling – 
Given a set of courses requested by each student, a set of 
time slots, and an integer k, determine if there is an 
assignment of courses to time slots with at most k conflicts 
amongst the students' schedules.

Is course scheduling in NP?
• yes

– it is a decision problem (yes/no question)
– a 'yes' answer is verifiable in polynomial time – given an 

assignment of courses to time slots, one simply needs to go 
through each student's schedule and count conflicts

Is course scheduling NP-complete?
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Reduction Example

Course scheduling – 
Given a set of courses requested by each student, a set of 
time slots, and an integer k, determine if there is an 
assignment of courses to time slots with at most k conflicts 
amongst the students' schedules.

Is course scheduling NP-complete?
• we need a known NP complete problem to reduce to this 

problem

3-coloring – 
Determine if you can color a graph with three colors so that 
no two adjacent nodes have the same color.

– known to be NP-complete
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Reduction Example

Reduce an instance of 3-coloring to an                      
instance of course scheduling:
• vertices → courses
• edges → students

– each student will have two requested courses, corresponding to 
the two vertices connected by the edge

• colors → timeslots
– there will be three timeslots, corresponding to the three colors

• legal coloring → k = 0
– an illegal 3-coloring means two adjacent nodes with the same 

color – this corresponds to a student whose courses are 
scheduled in the same timeslot

– a schedule with no conflicts thus means a legal 3-coloring

This construction only takes polynomial time.
– traverse the graph – O(n) to create courses for n vertices, O(m) 

to create students for m edges, O(1) to create three timeslots

remember that reducing A to 
B means that B is at least as 
hard as A
• B can't be easier than A, or 

else we'd have a better 
algorithm for A

• A could be easier than B, 
because there may be 
another algorithm for A
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Reduction Example

Thus, course scheduling is also NP-complete.

– if course scheduling could be solved in polynomial time, so could 
3-coloring

– if 3-coloring can be solved in polynomial time, so can everything 
else in NP
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Direction of Reductions Matters!

A sudoku puzzle is an instance of an 
exact cover problem, meaning that 
sudoku can be reduced to exact cover.

– exact cover: given a collection of subsets of 
X, is there a group of those subsets such 
that every element of X is contained in 
exactly one subset?

Exact cover is NP complete.

Does this mean sudoku is NP complete 
too?

– not necessarily – the hard problem (exact 
cover) can be used to solve sudoku, but 
maybe there's some other way to solve 
sudoku more efficiently
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Proving NP-Completeness

But how do you get a known NP-complete problem in the 
first place?

– need a direct proof!

[1971]  Cook-Levin theorem proved SAT is NP-complete.

Idea:
• start with a nondeterministic Turing machine which solves 

some problem in NP
• for each possible input, build a boolean expression which is 

satisfiable if and only if the machine accepts the input (a “yes” 
response)

Solving satisfiability tells whether or not the machine 
accepts the input, so satisfiability cannot be easier than the 
NP problem.  (And since this construction can be done for any NP 
problem, satisfiability cannot be easier than any NP problem.)

SAT: is there an assignment of values to variables in a 
boolean expression so that the expression evaluates to TRUE?
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Cook-Levin Details

• SAT is in NP because 

– it is a decision problem
– whether a given assignment of values actually satisfies the 

expression can be checked in polynomial time
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Cook-Levin Details

Ingredients – building a boolean expression to represent the Turing 
machine's task

• boolean variables represent the state of the Turing 
machine as it executes its program

– p(n) = number of steps required for the Turing machine to accept 
or reject an input

• polynomial function because it solves a problem in NP

http://en.wikipedia.org/wiki/Cook-Levin_theorem
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Cook-Levin Details

• expressions involving those variables represent the 
machine's input, goal, program, and rules of operation

http://en.wikipedia.org/wiki/Cook-Levin_theorem

CPSC 327: Data Structures and Algorithms  •  Spring 2024 66

Cook-Levin Details

The transformation from Turing machine to instance of SAT 
is a polynomial-time reduction.

– O(p(n)2) variables
– O(p(n)3) clauses

Transforming the SAT solution to a solution for the NP 
problem is O(1).

Thus, if SAT could be solved in polynomial time, so could 
any problem in NP.
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Hardness

Hard problems are at least as hard as the hardest problems 
in the class but may not be in the class itself.

NP-hard – set of problems that NP-complete problems can 
be reduced to

• all NP-complete problems are also NP-hard
• FNP versions of NP-complete problems are NP-hard
• there appear to be problems that are NP-hard but not NP-

complete
– e.g. determining whether or not a given chess board 

configuration is checkmate
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Common Myths

NP problems require exponential time.

Probably yes.

But technically unknown, because P != NP hasn't been 
proven.

– though it is generally thought that there are problems in NP that 
are not in P (and thus some problems in NP do require exponential time)

Also no, because there may be specific instances or 
classes of instances which can be solved in polynomial (or 
at least subexponential) time.

– e.g. maximum independent set – NP-hard/complete in general, 
O(n) for trees

– e.g. longest path – NP-hard/complete in general, O(n+m) for 
DAGs
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Common Myths

NP-complete problems are difficult because the search 
space is so large.

No, it's not the size of the search space as such, but that 
you have to look at so much of it.

– compare to greedy – and even many dynamic programming – 
algorithms

framed as a series of choices, the running time 
depends on branching factor, longest path

these are also framed as a series of choices, but either 
only one option is needed for each choice (a branching 
factor of 1) or there are many repeated subproblems so 
most branches can be pruned
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Common Myths

P is good and NP is bad.

Not necessarily – 
• a polynomial-time algorithm may have large constant 

factors or exponents

• the exponential-time worst-case behavior may be rare
– e.g. simplex algorithm for linear programming

• you might not need to solve large input sizes
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Harder than NP?

Are there any problems harder than NP?

Yes.
• e.g. Presburger arithmetic
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Presburger Arithmetic

Definition – 
• contains constants 0 and 1 and the operator +
• axioms

http://en.wikipedia.org/wiki/Presburger_arithmetic

Why is Presburger arithmetic interesting?
• it is decidable – an algorithm exists to determine if any given 

statement is derivable from the axioms
• the decision problem has worst-case runtime 22cn

 for c > 0
• there are theorems of length n whose proofs have doubly 

exponential length
– implies that there are computational limits on what can be proven by 

computer programs
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Unknown Problems

Are there problems whose hardness is unknown?

Yes.

Two examples –
• graph isomorphism

– given two graphs G and H, determine if there is mapping f from 
vertices of G to vertices of H such that if (x,y) is an edge of G, 
(f(x),f(y)) is an edge of H

– thought to be between P and NP-complete – can often be solved 
quickly in practice

• integer factorization
– given integers n and m, does n have a factor at most m?
– known to be in both NP and co-NP, thought to not be in P or NP-

complete
– primality testing is in P

co-NP = can verify “no” answer in polynomial time


