

CPSC 327: Data Structures and Algorithms • Spring 2024 75

Other Complexity Classes

PSPACE – decision problems which can be solved by a
Turing machine needing only polynomial space

EXPSPACE – decision problems which can be solved by a
Turing machine needing an exponential amount of space

• how does PSPACE compare to P and NP?
– bigger (probably)

• does EXPSPACE contain PSPACE?
– yes

• are there problems in EXPSPACE that aren't in PSPACE?
– yes

CPSC 327: Data Structures and Algorithms • Spring 2024 76

Many Interesting Problems are NP-Complete

h
tt

p
:/

/x
k
cd

.c
o
m

/2
8
7

/

CPSC 327: Data Structures and Algorithms • Spring 2024 77

Many Interesting Problems Are NP-Complete

More than 3000 NP-complete problems are known.
– http://en.wikipedia.org/wiki/List_of_NP-complete_problems

traveling salesman min cost hamiltonian cycle

closest string find a string with minimum distance to all other strings in a set

art gallery problem minimum number of guards to cover all hallways

berth allocation
problem

assignment of ships to berths in port to minimize service time,
minimize delayed departures, optimize fuel consumption, etc

generalized
assignment

assignment of agents to tasks so as to not exceed the agents'
budget and the total profit of the assignment

maximum
common subgraph
isomorphism

applications in cheminformatics

multiprocessor
scheduling min time required to schedule jobs on multiple processors

vehicle routing minimize cost of distribution of goods from central warehouses
to customers

bin packing pack objects into bins to minimize number of bins (e.g. loading
trucks, backing up files onto removable media)

register allocation assign variables to available registers n
o
te

:
m

o
st

 o
f

th
e
se

 d
e
sc

ri
p
ti

o
n
s

a
re

 f
o
r

th
e
 f

u
n
ct

io
n

ve
rs

io
n
 o

f
th

e
 p

ro
b

le
m

 –
 t

e
ch

n
ic

a
lly

 n
o
t

in
 N

P
,
b

u
t

th
e

fu
n
ct

io
n

 v
e
rs

io
n
 i
sn

't
 a

n
y
 e

a
si

e
r

th
a
n
 t

h
e
 d

e
ci

si
o
n

 v
e
rs

io
n

CPSC 327: Data Structures and Algorithms • Spring 2024 78

So...

...you need to solve an NP-complete (or -hard) problem.
What do you do?

http://xkcd.com/399/

CPSC 327: Data Structures and Algorithms • Spring 2024 79

Tactics

• dodge the bullet
– you may not need to solve for large inputs
– you may only need to solve for a special class of inputs which

have an efficient algorithm

• bite the bullet
– recursive backtracking – clever pruning!
– branch-and-bound – clever bound functions!

• settle for good enough
– heuristics – clever tricks which seem to work well, but without

guarantees on runtime or solution quality
– approximation algorithms – with bounds on the quality of the

approximation

CPSC 327: Data Structures and Algorithms • Spring 2024 80

Best-First Search

• recursive backtracking uses depth-first search

• if the goal is only a single solution (whether any or
optimal), best-first search can speed up finding that
solution
– for optimization problems, combine with branch-and-bound

• best-first search explores the most promising subproblem
first
– standard best-first uses the cost of the partial solution

• favors shorter partial solutions first
• can end up exploring a lot if there's a late expensive choice

– A* uses the cost of the partial solution + estimate of cost of the
remaining solution

• estimate must be safe (pessimistic)

(*) ADM refers to best-first search as branch-and-bound
but the order in which you address subproblems (ADM)
is distinct from pruning away non-optimal solutions
(our usage) – though the two can go nicely together

CPSC 327: Data Structures and Algorithms • Spring 2024 81

Best-First Search

• a major drawback of best-first search is memory usage
– DFS only stores the ancestors of the current subproblem

• depends on the height of tree

– best-first search stores up to the width of the tree
• A* can make enough of an improvement to be usable

To get an answer from a slow program you just have to be
patient enough, but a program that crashes because of lack of
memory will not give an answer no matter how long you wait.

– ADM p 302

CPSC 327: Data Structures and Algorithms • Spring 2024 83

Heuristics – Local Search

One family of heuristics involves local search.

The idea.
• apply small changes to a solution, keeping the changes

that result in improvements

An example.
• TSP – replace edges (u,v) and (u',v') in a solution with

edges (u,v') and (u',v)

CPSC 327: Data Structures and Algorithms • Spring 2024 84

Heuristics – Local Search

Local search can be effective when –

• there is great coherence in the solution space
– nearby solutions are a little better or a little worse
– ideally only one hill

• incremental evaluation is much cheaper than global
evaluation
– e.g. updating cost of TSP solution when swapping two edges is

O(1) vs O(n) to compute cost of a cycle in the first place

Hazards.

• local minima
– solutions for which no small change results in improvement, but

which are not optimal

CPSC 327: Data Structures and Algorithms • Spring 2024 85

Dealing with Local Minima

• randomization and restarts
– choose a random starting solution
– randomly select the local move from amongst the available

choices
– repeat and take the best result

• quickly increases the probability of finding a good local optimum, but there
may be many more bad local optima than good ones...

• simulated annealing
– occasionally allow moves that make the current solution worse

• increases the time needed to find a local optimum

– decrease the probability of bad moves as time goes on
• coming up with a good annealing schedule is not necessarily easy

• other tactics
– e.g. genetic algorithms – maintain a population of solutions,

allow crossover between parts of solutions

CPSC 327: Data Structures and Algorithms • Spring 2024 86

Random Sampling

• repeatedly choose a random solution, keeping the best
one found so far

To be effective, requires

• a high proportion of legal solutions
– so you can stumble on one

• no coherence in the solution space
– coherence means there can be a notion of getting closer to a

solution, which would be advantageous to exploit (local search)

CPSC 327: Data Structures and Algorithms • Spring 2024 88

Approximation Algorithms

Heuristics are hopefully fast and result in hopefully good
(though not necessarily optimal) solutions, without
guarantees.

Approximation algorithms yield a guaranteed “close enough”
solution.

CPSC 327: Data Structures and Algorithms • Spring 2024 89

Approximation Algorithms

But even approximation can be hard.

• the good: polynomial-time approximation algorithms
which get arbitrarily close to the optimal solution
– e.g. 0-1 knapsack – based on the idea of scaling and rounding

weights so W is polynomial in n, then using dynamic
programming (approximation comes from roundoff)

• the OK: polynomial-time approximation algorithms, but
with limits on how close the approximation can get to the
optimal solution
– e.g. MST approximation for TSP satisfying the triangle inequality

(cost at most twice optimal)

• the bad: any polynomial-time approximation algorithm can
be arbitrarily far from the optimal solution
– e.g. general TSP

CPSC 327: Data Structures and Algorithms • Spring 2024 90

Developing Approximation Algorithms

• simple procedures are not necessarily useless
– e.g. vertex cover – repeatedly pick an edge (u,v), add u and v to

the cover, remove edges incident on u and v
• at most twice as large as optimal cover (any cover must include at least

one vertex per edge picked)
• can do slightly better with a more complex algorithm, but can't get

arbitrarily close

• greedy is not necessarily advantageous
– e.g. vertex cover – picking highest degree vertex can lead to

worse worst-case performance

• even heuristics that don't impact the worst case can still
improve performance in practice

• can get the best of both worlds
– use both the approximation algorithm and a heuristic, and take

the best

CPSC 327: Data Structures and Algorithms • Spring 2024 91

Key Takeaways

• what tactics exist for making things manageable
– realize that you have an easier special case
– embrace exhaustive search and work on pruning
– let go of optimality

• a brief introduction to those tactics so you have a starting
point for brainstorming and for further study

• the importance of experience and good references
– recognizing your problem as a known problem in disguise means

you can leverage what is known about the other problem

