How to Design Algorithms and Data
Structures in Practice

How to Design Algorithms and Data Structures

Try a simple solution —
basic properties
how do you measure the quality of a solution once constructed?
brute force — straightforward implementation of definition,
search through all possible solutions and pick the best
will this work correctly? if so, why are you sure of that?
is the running time polynomial or exponential? is the typical
input size small enough that it doesn't matter?
heuristic — repeatedly apply a simple rule about what to
do next
for what kinds of inputs does this strategy work well enough? do
you need to solve the problem for other inputs?

for what kinds of inputs does this strategy work poorly? if you
can't find any examples, can you prove that it always works
well?

how quickly does this strategy find an answer? is the

implementation simple? =

©

How to Design Algorithms and Data Structures

Really understand the problem —
specifications
what exactly does the input consist of?
what exactly are the desired results / output?

construct a small input example — what happens when you try to
solve it by hand?

is the problem sufficiently well defined to actually have a correct
solution?

assess the requirements
how large is a typical instance?

is it necessary to find the optimal solution? is close good
enough?

how important is speed? how long is it acceptable to wait?
how much time and effort do you have to spend?
identify a strategy

what kind of problem is it? (numerical, graph, geometric, string,
set, ...) what kind of formulation seems easiest? =

How to Design Algorithms and Data Structures

In a simple solution is insufficient, start trying on hats —

can you recognize the problem as something familiar?
identify the essence of the problem

consult the Hitchhiker's Guide / Stony Brook Algorithm

Repository (or another source) Skiena, The Algorithm Design Manual
http://www.algorist.com/algorist.html

is the problem a special case of something familiar?

if so, what is known about the problem? is there an
implementation that you can use?
if not, did you look in the right place?

browse the Hitchhiker's Guide more carefully

look under all possible keywords in the index

search other algorithms resources and the Internet

CPSC 327: Data Structures and Algorithms + Spring 2024 a

How to Design Algorithms and Data Structures

If the problem isn't recognizable as something familiar —

consider special cases to gain insight

can you simplify the problem enough to solve it efficiently? e.g.
ignore some parameters, set some parameters to trivial values,
ignore some aspects of the task

why can't the special-case solution be generalized?

CPSC 327: Data Structures and Algorithms + Spring 2024

How to Design Algorithms and Data Structures

Other strategies —

consider randomness
e.g. randomly choosing the next item to consider
e.g. random sampling
e.g. simulated annealing

can the problem be formulated as a linear program? an
integer program?

CPSC 327: Data Structures and Algorithms + Spring 2024

How to Design Algorithms and Data Structures

design a solution

is there something that can be sorted? does that make it easier
to find the answer?

is there a way to split the problem into two smaller problems?
can divide-and-conquer be used?

do the input elements or solution have a natural left-to-right
order? can the problem be formulated as a series of decisions?
can dynamic programming be used to exploit this order?

are certain operations done repeatedly, such as searching or
finding max/min? can a data structure (map, PQ) be used to
speed this up?

does the problem sound like an NP-complete problem?
consult a list of NP-complete problems
try tactics for dealing with NP-complete problems

CPSC 327: Data Structures and Algorithms + Spring 2024

CPSC 327: Data Structures and Algorithms + Spring 2024

Course Takeaways Course Takeaways

» knowledge of how to think about algorithms and data
structures

developing an efficient data structure for a problem, based on an
analysis of the problem (including adapting typical ADTs/data having a sense whether the time and space requirements are
structures as needed) good or whether improvements seem likely (and where to look

developing an efficient and correct algorithm for a problem, for them)
including any necessary data structures

justifying decisions made, demonstrating a thorough
consideration of the implications of the choices made, tradeoffs,
and alternatives that were dismissed

» a working knowledge of algorithmic efficiency

determining the time and space requirements of data structures
and algorithms (both iterative and recursive)

L ————————
e —
9

CPSC 327: Data Structures and Algorithms + Spring 2024 CPSC 327: Data Structures and Algorithms + Spring 2024 10

Data Structures

Dictionaries, Priority Queues, Suffix Trees and Arrays, Graph Data Struclures, Set
Data Structures, Kd-Trees

Course Takeaways

Numerical Problems

Solving Linear Equations, Bandwidth Reduction, Matrix Multiplication, Determinants
and Permanents, Constrained and Unconstrained Optimization, Linear Programming,
. . Random Number Generation, Factoring and Primality Testing, Arbitrary-Precision
°ca tOOIbOX Of ADTS, data StrUCtures, and a|gor|thm|C Arithmetic, Knapsack Problem, Discrete Fourier Transform

Strategles Combinatorial Problems

a—a a q Sorting, St hing, Medi d Selection, Gi ting P tations, Gi ti
know the characteristic operations of the ADTs studied, and be Subsels, Ganeraing Pariions. Generating Graphs, Galencrical Galculations, Job
able to identify ADT(s) appropriate for a given application

Graph: Polynomial-time Problems

Scheduling, Satisfiability
know the time and space requirements of typical operations in
the data structures studied, and be able to select an appropriate
implementation for a given application

know what characteristics make a problem suitable for a
particular algorithmic technique (and be able to recognize when
a problem is not suitable for a particular technique)

know the "templates" or patterns for applying the algorithmic
techniques studied to develop an algorithm and prove it correct

CPSC 327: Data Structures and Algorithms + Spring 2024 1

Connected Components, Topological Sorting, Minimum Spanning Tree, Shortest Path,
Transitive Closure and Reduction, Matching. Eulerian Cycle/Chinese Postman, Edge
and Vertex Connectivity, Network Flow, Drawing Graphs Nicely, Drawing Trees,
Planarity Detection and Embedding

Graph: Hard Problems

Clique, Independent Set, Vertex Cover, Traveling Salesman Problem, Hamiltonian
Cycle, Graph Partition, Vertex Coloring, Edge Coloring, Graph Isomorphism, Steiner
Tree, Feedback Edge/Vertex Set

Computational Geometry

Robust Geometric Primitives, Convex Hull, Triangulation, Voronoi Diagrams, Nearest
Neighbor Search, Range Search, Point Location, Intersection Detection, Bin Packing,
Medial-Axis Transform, Polygon Partitioning, Simplifying Polygons, Shape Similarity,
Motion Planning, Maintaining Line Arrangements, Minkowski Sum

Set and String Problems

Set Cover, Set Packing, String Matching, Approximate String Matching, Text
Compression, Cryplographﬁ/, Finite State Machine Minimization, Longest Common
Substring/Subsequence, Shortest Common Superstring

https://
www.algorist.com/
algorist.html

—

https://www.algorist.com/algorist.html

Suffix Trees and Arrays

XY7XYZ$
YZXYZ$
XYZ$
XYZ$
YZ$

z$

$

Input Output

Input Description: A reference string S.

Problem: Build a data structure for quickly finding all places where an arbitrary
query string g is a substring of S.

Excerpt from The Algorithm Design Manual: Suffix trees and arrays are phenomenally useful data structures for solving

string problems elegantly and efficiently. f you need to speed up a string processing algorithm from O (n?) to linear time,
proper use of suffix trees s quite likely the answer.

CPSC 327: Data Structures and Algorithms + Spring 2024

https://www.algorist.com/algorist.html

Job Scheduling

H
b [|
/ HEEE

JAN FEB MAR APR MAY

Input Output

Input Description: A directed acyclic graph G = (V, E), where the vertices
represent jobs and the the edge (u, v) that task « must be completed before task
v.

Problem: What schedule of tasks to completes the job using the minimum amount

of time or processors?

Excerpt from The Algorithm Design Manual: Devising a proper schedule to salisty a set of constrants s fundamental fo
many applications. A critical aspect of any parallel processing system is the algorithm mapping tasks to processors. Poor
scheduling can leave most of the expensive machine sitting idle while one bottleneck task is performed. Assigning people to
jobs, meetings to rooms, or courses to final exam periods are al different examples of scheduling problems.

Scheduling problems differ widely in the nature of the constraints that must be satisfied and the type of schedule desired,
For this reason, several other catalog problems have a direct application to various kinds of scheduling.

We focus on precedence-constrained scheduling problems for directed acyclic graphs. These problems are often called
PERTICPM, for Program Evaluation and Review Technique/Critical Path Method. Suppose you have broken a big job into a
large number of smaller tasks. For each task you know how long it should take (or perhaps an upper bound on how long it

might take). Further, for each pair of tasks you know whether it is essential that one task be performed before another. The
fewer constraints we have to enforce, the better our schedule can be. These constraints must define a directed acyclic

CPSC 327: Data S{ graph, acyclic because a cycle in the precedence constraints represents a Catch-22 situation that can never be resolved.

15

Linear Programming https://www.algorist.com/algorist.html

s

Maximizing 6x; +x2 +4x3

subject to

31+ 70+ x3<15

X1 — 2x + 3x3 < 20 Input Output

x1,%2,x3 2 0

CPSC 327: Data Structures an{

Input Description: A set of linear inequalities, a linear objective function.
Problem: Find the assignment to the variables maximizing the objective function
while satisfying all inequalities.

Excerpt from The Algorithm Design Manual: The standard algorithm for linear programming is called the simplex method.
Each constraint in a linear programming problem acts like a knife that carves away a region from the space of possible
solutions. We seek the point within the remaining region that maximizes (or minimizes) f(X). By appropriately rotating the
solution space, the optimal point can always be made to be the highest point in the region. Since the region (simplex)
formed by the intersection of a set of linear constraints is convex, we can find the highest point by starting from any vertex of
the region and walking to a higher neighboring vertex. When there is no higher neighbor, we are at the highest point.

While the basic simplex algorith is not too difficult to program, there is a considerable art to producing an efficient
implementation capable of solving large linear programs. For example, large programs tend to be sparse (meaning that
most inequalities use few variables), so sophisticated data structures must be used. There are issues of numerical stability
and robustness, as well as which neighbor we should walk to next (so called pivoting rues). Finally, there exist sophisticated
interior-point methods, which cut through the interior of the simplex instead of walking along the outside, that beat simplex in
many applications.

Satisfiability

https://www.algorist.com/algorist.html

clause

Input Description: A set of clauses in conjunctive normal form.
Problem: Is there a truth assignment to the boolean variables such that every

(L1 or T or 3) (X1 or T or 3)
(XL or .T20r333) (X1 or f?or x3)
(T]or T or T3) (T or T or T3)
(X1 or 9 or T3) (X1 or 9 or T3)

Input Output

is satisfied?

CPSC 327: Data §

Excerpt from The Algorithm Design Manual: Satisfiabilty arises whenever we seek a configuration or object that must be
consistent with (vie satisfy) a given set of constraints. For example, consider the problem of drawing name labels for cities
on amap. For the labels to be legible, we do not want the labels to overlap, but in a densely populated region many labels
need to be drawn in a small spage. How can we avoid collisions?

For each of the n cities, suppose we identify two possible places to position its label, say right above or right below each
city. We can represent this choice by a Boolean variable \(viy), which will be true if city \(c))'s label is above \(ci), otherwise:
\(vi - false\). Certain pairs of labels may be forbidden, such as when \(ci)'s above label would obscure \(¢})'s below label.
This pairing can be forbidden by the two-element clause (#;\OR;), where & means not . Finding a satisfying truth
assignment for the resulting set of clauses yields a mutually legible map labeling if one exists.

Satisfiabilty is the original NP-complete problem. Despite its applications to constraint satisfaction, logic, and automatic
theorem proving, it is perhaps most important theoretically as the root problem from which all other NP-completeness proofs
originate. 16

Graph: Polynomial-time Problems https://www.algorist.com/
algorist.html
—
Connected Components Topological Sorting Minimum Spanning Tree
: D
Shortest Path Transitive Closure and Reduction Matching
Dosh > >
Eulerian Gycle/Chinese Postman Edge and Veertex Gonnectivity Network Flow
Drawing Graphs Nicely Drawing Trees Planarity Detection and Embedding
CPSC 3|
https://www.algorist.com/algorist.html
—Bin Packing

Input Output

Input Description: A set of n items with sizes d, . . ., d,,. A set of m bins with
capacity €1, . . ., Cp-
Problem: How do you store the set of items using the fewest number of bins?

Excerpt from The Algorithm Design Manual: Bin packing arises in a variety of packaging and manufacturing problems.
Suppose that you are manufacturing widgets with parts cut from sheet metal, or pants with parts cut from cloth. To minimize
cost and waste, we seek to lay out the parts €0 as 1o use as few fixed-size metal sheets or bolts of cloth as possible.
Identifying which part goes on which sheet in which location fs a bin-packing variant called the cutting stock problem. After
our widgets have been successiully manufactured, we will be faced with another bin packing problem, namely how best to fit
the boxes into trucks to minimize the number of trucks needed to ship everything.

CPSC 327: Data Structures and Algorithms + Spring 2024

17

Graph: Hard Problems

https://www.algorist.com/algorist.html

&

A

Clique Independent Set Vertex Cover

Traveling Salesman Problem Hamitonian Cycle Graph Partiion

MO

Vertex Coloring Edge Coloring Graph Isomorphism
< p P
. . .
Steiner Tree Feedback Edge/Vertex Set

CPSC 327: Data Structures and Algorithms + Spring 2024

https://www.algorist.com/algorist.html

—— Convex Hull

Input Output

Input Description: A set S of n points in d-dimensional space.
Problem: Find the smallest convex polygon containing all the points of S.

Excerpt from The Algorithm Design Manual: Finding the convex hull of a set of points is the most elementary interesting
problem in computational geometry, just as minimum spanning tree is the most elementary interesting problem in graph
algorithms. It arises because the hull quickly captures a rough idea of the shape or extent of a data set

Convex hull also serves as a first preprocessing step to many, if not most, geometric algorithms. For example, consider the
problem of finding the diameter of a set of points, which is the pair of points a maximum distance apart. The diameter will
always be the distance between two points on the convex hul. The Ofn \ig n). algorithm for computing diameter proceeds

CPSC 327 Data. d called rotating-calipers” method can be used to move efficiently from one hull vertex to another.

by first constructing the convex hull, then for each hull vertex finding which other hull vertex s farthest away from it. This so- &

Set Packing https://www.algorist.com/algorist.html

U

Input Qutput

Input Description: A set of subsets S = S, ..., S, of the universal set
U=A{1,...,n}.
Problem: What is the largest number of mutually disjoint subsets from S?

Excerpt from The Algorithm Design Manual: Set packing problems arise in partitioning applications, where we need to
partition elements under strong constraints on what is an allowable parttion. The key feature of packing problems is that no
elements are permitted to be covered by more than one set. We seek a large subset of vertices such that each edge is
adjacent to at most one of the selected vertices. To model this as set packing, let the universal set consist of all edges of G,
and subset (1) consist of all edges incident on vertex \(vi). Any set packing corresponds to a set of vertices with no edge
in common, in other words, an independent set.

Scheduling airine fight crews to airplanes is another application of set packing. Each airplane in the fleet needs to have a

crew assigned to it, consisting of a pilt, copilet, and navigator. There are constraints on the composition of possible crews,

based on their training to fly different types of aircraft, as well as any personality conflicts. Given all possible crew and plane

combinations, each represented by a subset of items, we need an assignment such that each plane and each person is in

exactly one chosen combination. After all, the same person cannot be on two different planes, and every plane needs a
CPSC 327: Data§ crew. We need a perfect packing given the subset constraints.

