AVL Trees

An AVL tree is a BST + a height balance property:

- for every node, the height of the node's left subtree is no more than one different from the height of the node's right subtree

The height balance property ensures that the height of an AVL tree with n nodes is $O(\log n)$.

CPSC 327: Data Structures and Algorithms - Sping 2020

Operations on AVL Trees

An AVL tree is a BST, so the find operation is no different.
For insert and remove:

- insert/remove as dictated by the (BST) structural and ordering rules
- fix up the broken balance property as needed

Insert

- structural property dictates that insertion only occurs at a node with fewer than 2 children
- ordering property dictates where

Remove

- structural property dictates that removal only occurs at a node with fewer than 2 children
- may need to swap desired element with next larger/smaller in order to satisfy the structural property

remove 3
swap with 4 and remove no height-balance violations we're done!
remove 9
height-balance property violated - uh oh!

CPSC 327 : Oata Stucutres and Algorithms - Soring 2020

Restructuring

Both insertion and deletion may break the height balance property.

Restore it by performing one or more restructuring operations (or rotations).

CPSC 327: Dala Structures and Algorithms - Spring 2020 ${ }_{26}$

Restructuring

let z be the first unbalanced node (working up the tree from the point of insertion/deletion)
let y be z's tallest child
let x be y 's tallest child
relabel x, y, z as a, b, c according to their correc sorted order
label the other subtree children of a, b, c as T 1 ,
T2, T3, T4 according to their correct sorted order
rearrange as shown

Restructuring

Restructuring

How many restructuring operations are needed?
Observation.

- restructuring reduces the height of a subtree

Insertion -

- insertion increases the height of a subtree, so one restructuring is sufficient to shorten it and restore balance

Removal -

- removal decreases the height of a subtree, so one restructuring may only result in pushing the imbalance higher up the tree
- $O(\log n)$ restructurings may be required

CPSC 327: Data strucurres and Algorithms. Soring 2020

Running Time

- initial BST insert/remove - O(log n)
- number of nodes to check for balance - O(log n)
- time to perform a balance check $-\mathrm{O}(1)$ if height info is stored for each node
- time to perform one restructuring $-\mathrm{O}(1)$
- number of restructurings performed - 1 for insertion, O(log n) for removal
- time to update stored balance information $-\mathrm{O}(\log \mathrm{n})$ nodes affected, O(1) per

Total time: $\mathrm{O}(\log \mathrm{n})$ for insert/remove

