
A sidebar indicates the “answer” for each step — it is content that is part of following the algorithm
development process, separate from commentary about the process or the solution itself.

Longest Increasing Subsequence

Specifications. State complete specifications for the problem. What is the problem? What do you start
with (input) and what is the end result (output)? What are the legal input instances and the required
output for each? For optimization problems, distinguish between legal solutions and optimal ones.

Given a sequence S of numbers, find the longest subsequence containing increasing numbers. The
numbers in the subsequence must occur in that order in S, but need not be consecutive in S.

Input: sequence S of numbers

Output: (sub)sequence of numbers

Legal solution: elements of the (sub)sequence are in increasing order

Optimization goal: longest increasing subsequence

Examples. If needed, give examples (specific inputs and the corresponding outputs) of typical and special
cases to clarify the specifications.

5 10 2 7 10 1 18 3

Both 5 10 18 and 2 7 10 18 are increasing subsequences; 2 7 10 18 is longer.

Size. What is the size of the problem, and what constitutes a smaller problem? What is the sim-
plest/smallest instance of the problem?

The size of the problem is n, the length of S.

The smallest problem is n = 0.

Targets. What are the time and space requirements for your solution?

This is a variation of a ”find subset” problem, and there are 2n possible subsets — two choices
(include or not include) for each element — and O(2n) possible subsets that are increasing
subsequences.

Tactics. The time and space constraints may narrow down the algorithmic options and/or may guide you
in particular directions. Consider both things you can and can’t do.

Since subsequent choices of elements in the subsequence depend only on the last element included
so far, this seems like a candidate for dynamic programming being able to improve the running
time.

Approaches. Identify the particular flavor, if applicable, as well as the two patterns (process input and
produce output) and what they look like for this problem.

This is a subset problem — a subsequence is a subset of the original sequence. There is also an
ordering aspect, but the order of the elements included in the subsequence is dictated by their
order in the original sequence rather than something that is part of the task to determine.

April 18, 2024 81



Process input — for each number, determine whether or not to include it in the subsequence

Produce output — find the next number in the subsequence

Process input has a lower branching factor, so that seems like a better approach from an efficiency
standpoint — less work per subproblem.

Generalize / define subproblems. Friends get smaller versions of the original problem. Define the task,
input, and output for the subproblems.

Partial solution. Identify what constitutes a solution-so-far. This will be the same kind of thing as a
legal solution for the whole problem, but less complete (fewer choices have been made).

The whole solution is a (complete) subsequence, so a partial solution is (the beginning of) a
subsequence.

Alternatives. Identify the choice being made and what the (legal) alternatives are for that choice.
(Alternatives that result in an illegal solution aren’t considered farther.)

The choice is whether or not to include the current element of S in the subsequence.

Subproblem. The “rest of the problem”. Define the generalized problem, its input, and its output.
The input can include the partial solution so far, in which case the output would be a complete solution,
or the input can only denote the subproblem, in which case the output is only the solution for the subproblem.

Original problem: Given a sequence S of numbers, find the longest subsequence containing
increasing numbers. The numbers in the subsequence must occur in that order in S, but need
not be consecutive in S.

Subproblem / generalized problem: Given a sequence S of numbers and the beginning of a
subsequence of S, find the longest subsequence containing increasing numbers continuing from
that point. The numbers in the subsequence must occur in that order in S, but need not be
consecutive in S.

Input: sequence S of numbers, subsequence-so-far T , current point k in S

Output: (sub)sequence of numbers

Legal solution: elements of T + the (sub)sequence are in increasing order

Optimization goal: longest increasing subsequence

Base case(s). A base case occurs when there are no more choices to make.

There are no more choices to make when we’ve reached the end of S — k = n. Return an empty
sequence and length 0.

Main case. This takes the form of: for each legal alternative for the current decision, a friend solves the
remainder of the problem given the solution so far plus that choice. We return one of those solutions, the
best of those solutions, or all of the those solutions depending on the structural variation.

The two alternatives are to add the current element of S to the end of the subsequence or not, but adding
is only an option if it is bigger than the last element in T .

if S[k] is greater than the last element of T then

// include current element in subsequence

(S1,len1) ← subseq(S,T with S[k] appended,k+1)

April 18, 2024 82



// don’t include current element in subsequence

(S2,len2) ← subseq(S,T,k+1)

if len1 > len2 then

return (S[k] with S1 appended,len1+1)

otherwise

return (S2,len2)

otherwise

// don’t include current element in subsequence

return subseq(S,T,k+1)

Top level. The top level puts the context around the recursion.

Initial subproblem. T is empty and k = 0.

Setup. Nothing needed.

Wrapup. Return just the subsequence found, not the length.

Special cases. Make sure the algorithm works for all legal inputs — revise the previous steps to add
handling for special cases as needed.

n = 0 hasn’t been considered — the solution is an empty subsequence.

Termination. Show that the recursion ends. For making progress, explain why each subproblem is smaller.
For reaching the end, show that a base case is always reached.

Making progress. The length of the sequence remaining to consider is n− k, and k increases
by 1 with each recursive call.

Reaching the end. The base case is when k = n, and k increases by 1 each time.

Establish the base case(s). Explain why the solution is correct for each base case.

Only legal alternatives were considered, so a complete solution is a legal solution.

Show the main case. Explain why all possible alternatives for the next choice are covered and that the
right partial solution is passed to each friend. Then, assuming that the friends return the correct results for
their subproblem, explain why the correct answer is produced from those results.

Both alternatives (include or not) are considered, and “include” is only considered if the element
is legal to add to the subsequence.

The friends return solutions for the rest of S, so that is appended to the partial solution so far
and the alternative we picked.

Final answer. Explain why the top level — the setup plus a correct solution to the initial subproblem
followed by the wrapup — means that the final result is a correct answer to the problem.

The initial subproblem is the original problem, and the result of that includes the subsequence.
There is no setup to consider.

Implementation. Identify data structures and, as necessary, specific implementations of those data struc-
tures to efficiently support the algorithm. Also fill in any algorithmic steps that haven’t been specified.

April 18, 2024 83



Memoization. Identify how to parameterize subproblem state for efficient lookup, typically in an array.

The input for the subproblems is the original sequence S, the subsequence-so-far T , and the current
position k in S.

S is the original sequence; it is not part of characterizing particular subproblems and so doesn’t
need to be accounted for in the memoization.

k is an integer 0..n.

For T , observe that all that matters for subsequent choices is the last element of T . Also observe
that the last element of T (as well as every element of T ) is also an element of S, so T could be
fully represented for the purposes of subproblem state as the index in S where the element that
is last in T is stored. This is also an integer 0..n.

Let L[k][t] be the length of the longest increasing subsequence of S[k..n-1] with elements
greater than S[t]. The initial subproblem is a little problematic because t is the index of an
element of T , and T is empty to start. We can write it as L[0][-1] and recognize that it isn’t
stored in the array but is computed the same way as any other subproblem.

Order of computation. Loop(s) can be used to fill in the array; identify whether the loop(s) go from
small large index values or vice versa.

The base case is k = n so k needs to be filled in from large to small. L[k][] only depends on
L[k+1][] so the order for t doesn’t matter.

Dynamic programming. Combine the memoization and order of computation with the base and main
cases and the top level.

subseq(S) — Given a sequence S of numbers, find the longest subsequence containing increasing
numbers. The numbers in the subsequence must occur in that order in S, but need not be
consecutive in S.

Input: sequence S of numbers

Output: (sub)sequence of numbers

Legal solution: elements of the (sub)sequence are in increasing order

Optimization goal: longest increasing subsequence

// initialize the base cases - k=n

for t = 0 to n-1 do

L[n][t] = 0

// fill in the rest of the array

for k = n-1 downto 0 do

for t = 0 to n-1 do

if S[k] > S[t] then // can include S[k], choose best alternative

L[k][t] = max(L[k+1][k]+1,L[k+1][t])

otherwise // can’t include S[k]

L[k][t] = L[k+1][t]

// solution

return the subsequence for max(L[0][t]) for 0 ≤ t < n

Time and space. Assess the running time and space requirements of the algorithm given the implemen-
tation identified.

April 18, 2024 84



The array has (n + 1) × (n + 1) slots and computing each value is O(1) (two alternatives to
consider), so the total running time is O(n2).

April 18, 2024 85


