1. specifications

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?
input: n cities and the distance $d(i, j)$ between each pair of cities i, j
output: ordering of cities
legal solution: all cities included exactly once
optimization goal: shortest total distance
2. size
3. examples
4. targets
5. tactics
6. approaches
ordering
process input - for each city, where in the ordering do we visit it?
produce output - what's the next city to visit?
Produce output seems easier to define, and only requires appending to the partial solution so far.
7. generalize / define subproblems
a) partial solution
an ordering of the first k cities visited
b) alternatives
each of the remaining unvisited cities
c) subproblem

Given a list of cities, the distances between each pair of cities, and an ordering of cities visited so far, what is the shortest possible route that visits the remaining cities and returns to the origin city?
input: set C of $n-k$ remaining cities, the distance $d(i, j)$ between each pair of cities i, j, the ordering T of the k cities visited so far
output: ordering of remaining cities, total distance
legal solution: all remaining cities included exactly once
optimization goal: shortest total distance (including returning to the start after the last city)
8. base case(s)
no cities remaining - all have been visited
solution is empty list, but total distance is the distance to return to the origin city
9. main case
for each c of the $n-k$ remaining cities
$\left(T_{c}, d_{c}\right)=\operatorname{tsp}(\mathrm{C}-\{\mathrm{c}\}, T$ with c appended)
return (c with T_{c} appended, $c+d_{c}$) for the solution with max d_{c}
10. top level
a) initial subproblem
b) setup
c) wrapup
11. special cases
12. algorithm
13. termination
a) making progress
b) reaching the end
14. correctness
a) establish the base case(s)
b) show the main case
c) final answer
15. implementation
a) memoization
cities left - need
distances between them - global info
ordering so far - what matters is the current city - index in the original list, the origin city global info
b) order of computation
c) dynamic programming
16. time and space

