1. specifications

In a group of people, it is to be expected that some of them may not want to work with each other. Assuming that each person has at most d other people that they don't want to work with, divide the people into d+1 groups so that everyone is in exactly one group and no one is in a group with someone they don't want to work with.

Input: n people, for each person, up to d other people they don't want to work with

Output: membership for each of the d+1 groups, or labeling of the group each person belongs to

Legal solution: each person is in exactly one group, no one is in a group with someone they don't want to work with

- 2. examples
- 3. targets
- 4. tactics
- 5. approaches

process input – for each person, assign them to a group

produce output – who's the next person in this group? (for each group, assign its members) narrow the search space —

6. main steps

for each person

go through the groups, assign the person to the first group that doesn't have someone they don't want to work with

7. exit condition

when everyone has been assigned to a group

8. setup

9. wrapup

10.special cases

- is the don't want to work together mutual?
- can we have fewer than d+1 groups?

11.algorithm

12.termination

- a) measure of progress
- b) making progress
- c) reaching the end

13.correctness

a) loop invariant

for the first k people assigned to a group, no one has been assigned to more than one group and no one is in a group with someone they don't want work with

- b) establish the loop invariant
- c) maintain the loop invariant
- d) final answer

14.implementation

15.time and space