Recursive Algorithms

To solve a problem of size n -

- split the size n problem into one or more smaller problems of the same kind
- recursively solve the smaller problems
- compute the solution for the size n problem from the solution of the smaller problems

CPSC 327: Dala Structures and Aloonitms • Spring 2022

Running Time for Recursive Algorithms

Let $T(n)$ be the running time to solve a problem of size n.
Recursive algorithms tend to have one of two forms:

- split off b elements to create smaller problems

$$
T(n)=a T(n-b)+f(n) \text { where } f(n)=0 \text { or } \Theta\left(n^{c} \log ^{d} n\right)
$$

- divide into subproblems of size n / b

$$
T(n)=a T(n / b)+f(n) \text { where } \Theta\left(n^{c} \log ^{d} n\right)
$$

$-a \geq 1$ is the number of smaller problems

- $\mathrm{f}(\mathrm{n})$ is the work to split the size n problem into smaller problems and to combine the solutions to the smaller problems into the solution for the size n problem

Solving Recurrence Relations

$T(n)=a T(n-b)+f(n)$ where $f(n)=\Theta\left(n^{c} \log ^{d} n\right)$
Cases are based on the number of subproblems and $f(n)$,

\mathbf{a}	$\mathbf{f}(\mathbf{n})$	behavior	solution
>1	any	base case dominates (too many leaves)	$T(n)=\Theta\left(a^{n / b}\right)$
1	≥ 1	all levels are important	$T(n)=\Theta(n f(n))$

CPSC 327: Datas Structures and Aloorithms • Soring 2022

Solving Recurrence Relations

$T(n)=a T(n / b)+f(n)$ where $f(n)=\Theta\left(n^{c} \log ^{d} n\right)$
Cases are based on the relationship between the number of subproblems, the problem size, and $f(n)$.

$(\log a) /$ (log b) vs c	d	behavior	solution
<	any	top level dominates - more work splitting/combining than in subproblems (root too expensive)	$T(n)=\Theta(f(n))$
=	>-1	all levels are important $-\log n$ steps to get to base case, and roughly same amount of work in each level	$T(n)=\Theta(f(n) \log n)$
$=$	<-1	base cases dominate - so many	
>	any	subproblems that taking care of all the base cases is more work than splitting/combining (too many leaves)	$T(n)=\Theta\left(n^{(\log a) /(\log \mathrm{b})}\right)$

