The secret to using the sums table is to arrange the function being summed in the format $f(i)=b^{\text {ai }} i^{d} \log ^{e} i$ and determine b^{a}, d, and e.

The following table outlines the few easy rules with which you will be able to compute $\Theta\left(\sum_{i=1}^{n} f(i)\right)$ for functions with the basic form $f(n)=\Theta\left(b^{a n} \cdot n^{d} \cdot \log ^{e} n\right)$. (We consider more general functions at the end of this section.)

$\overline{\boldsymbol{b}^{\boldsymbol{a}}}$	d	\boldsymbol{e}	Type of Sum	$\sum_{i=1}^{n} f(i)$	Examples	
>1	Any	Any	Geometric Increase (dominated by last term)	$\Theta(f(n))$	$\begin{aligned} & \sum_{i=0}^{n} 2^{2^{i}} \\ & \sum_{i=0}^{n} b^{i} \\ & \sum_{i=0}^{n} 2^{i} \end{aligned}$	$\begin{aligned} & \approx \mathbf{1} \cdot 2^{2^{n}} \\ & =\Theta\left(b^{n}\right) \\ & =\Theta\left(2^{n}\right) \end{aligned}$
$=1$	>-1	Any	Arithmetic-like (half of terms approximately equal)	$\Theta(n \cdot f(n))$	$\begin{aligned} & \sum_{i=1}^{n} i^{d} \\ & \sum_{i=1}^{n} i^{2} \\ & \sum_{i=1}^{n} i \\ & \sum_{i=1}^{n} 1 \\ & \sum_{i=1}^{n} \frac{1}{i \cdot 99} \end{aligned}$	$\begin{aligned} & =\Theta\left(n \cdot n^{d}\right)=\Theta\left(n^{d+1}\right) \\ & =\Theta\left(n \cdot n^{2}\right)=\Theta\left(n^{3}\right) \\ & =\Theta(n \cdot n)=\Theta\left(n^{2}\right) \\ & =\Theta(n \cdot 1)=\Theta(n) \\ & =\Theta\left(n \cdot \frac{1}{n^{0.95}}\right)=\Theta\left(n^{0.01}\right) \end{aligned}$
	$=-1$	$=0$	Harmonic	$\Theta(\ln n)$	$\sum_{i=1}^{n} \frac{1}{i}$	$=\log _{e}(n)+\Theta(1)$
	<-1	Any	Bounded tail (dominated by first term)	$\Theta(1)$	$\begin{aligned} & \sum_{i=1}^{n} \frac{1}{i^{2.00}} \\ & \sum_{i=1}^{n} \frac{1}{i^{2}} \end{aligned}$	$\begin{aligned} & =\Theta(1) \\ & =\Theta(1) \end{aligned}$
<1	Any	Any			$\begin{aligned} & \sum_{i=1}^{n}\left(\frac{1}{2}\right)^{i} \\ & \sum_{i=0}^{n} b^{-i} \end{aligned}$	$\begin{aligned} & =\Theta(1) \\ & =\Theta(1) \end{aligned}$

(table from Jeff Edmonds, How to Think About Algorithms)

For example -

$$
\begin{array}{ll}
\sum_{1}^{n} i=\sum_{1}^{n} 1 \cdot 1^{i} \cdot i^{1} \cdot \log ^{0}(i) & \text { thus } b^{a}=1, \mathrm{~d}=1, \mathrm{e}=0 \\
\sum_{1}^{n} 4 i^{2}=\sum_{1}^{n} 4 \cdot 1^{i} \cdot i^{2} \cdot \log ^{0}(i) & \text { thus } \mathrm{b}^{\mathrm{a}}=1, \mathrm{~d}=2, \mathrm{e}=0 \\
\sum_{1}^{n} 2^{3 i} \log ^{2}(i)=\sum_{1}^{n} 1 \cdot\left(2^{3}\right)^{i} \cdot i^{0} \cdot \log ^{2}(i) & \text { thus } \mathrm{b}^{\mathrm{a}}=8, \mathrm{~d}=0, \mathrm{e}=2
\end{array}
$$

Also keep in mind that when the $5^{\text {th }}$ column in the table (showing the solution) references n, the " n " refers to the upper end of the sum - the column is showing the result for the sum from 1 to n . If you have a sum with a different upper range, it can be less confusing to first rewrite the pattern from the table with another symbol.
For example, $\sum_{1}^{n^{2}} i$ is of the $\Theta(n \cdot f(n))$ pattern, but the upper bound of the sum is n^{2} rather than n . So, rewrite the table pattern with a new symbol (such as s):

$$
\sum_{1}^{s} i=\Theta(s \cdot f(s)) \text {. Then substitute } n^{2} \text { for } s \text { to get the answer: } \quad \sum_{1}^{n^{2}} i=\Theta\left(n^{2} \cdot f\left(n^{2}\right)\right)=\Theta\left(n^{3}\right) .
$$

