Implementing Union-Find

A set is an unordered collection of things.
One way to implement a set is with a doubly-linked list.

makeset(x)
create a linked list with a single node containing x
0(1)
union(x,y)
append y's list to x's list
O(2) if you have tail pointers — set x's tail's next to point to y's head
find(x)
how to identify a set? — could use the head node as the
representative of the set

given a node, it is O(size of list) to find the head of its list — follow
prev pointers backwards from node to the head

- total: O(n X makeset+ mlogn+ m X find + n X union)

=0O(n +mlog n+nm + n) = O(hm)
(this is much worse than graph traversal, can we do better?)

union by rank list

Implementing Union-Find implementation

Can we do better? Union is the slow part — what if we
updated as few head pointers as possible?

union(x,y)
O(1) to append the smaller list to the larger list...but still O(size
of smaller list) to update head pointers in the smaller list
can store list sizes so it is possible to find the smaller list in O(1)

- total: O(n X makeset + mlog n + m X find + n X union)
observation: in the worst case O(size of smaller list) is O(n), but
we know something about the series of unions

each time we union and the head pointer for a node is updated, the node
is going into a set at least twice as big as it come from
this can happen at most log n times if there's a total of n elements
thus n unions with appending the smaller list is O(n log n)
instead of O(n?)

=0O(n+mlogn+m + nlog n) =0O((n+m) log n)
an improvement for sparse graphs!

|

Implementing Union-Find

Can we do better? Find is the slow part...

what's better than O(n)? - O(1)
if every node also had a pointer directly to the head, find(x) could
be done in constant time!

New implementation: singly-linked list with tail pointer and
each node also pointing directly to the head.

makeset(x) (can actually store head pointers

o(1 instead of prev pointers since the only

. ( ) reason to back up was to find the head)
union(x,y)

O(1) to append...but O(size of y) to update all head pointers in 'y
find(x)

0(1)

- total: O(n X makeset + mlog n+m X find + n X union)
=O(n+ mlogn+m+n?=0(mlog n + n?
(somewhat better...)

Implementing Union-Find

O((n+m) log n) for Kruskal's algorithm is pretty good — can
we do better?

Observation.
sorting the edges by weight requires O(m log n), which
will dominate O(n log n) as long as the graph is
connected
improving the data structure will result in elapsed time gains, but
not change the big-Oh

However...
union-find has applications beyond Kruskal's algorithm
greater efficiency in union-find operations may make a difference
there
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Maze Creation

In a good maze, every room is reachable from every other
and there's only one possible path from start to goal.

How to generate a random maze?

OK to delete
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" Not OK to delete

start with all of the walls and while there is more than one set left
every room in a separate set - choose a random wall
- if the rooms on either side belong to
different sets, knock down the wall
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Implementing Union-Find

Idea:
Represent a set as a directed tree.

makeset(x)
create a tree with a single node containing x
0(1)
union(x,y)
find the roots of x's and y's trees
make y's root point to x's root
O(find)
find(x)
use the root as the representative element
given a node, it is O(height of tree) to find the root of its tree
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Implementing Union-Find

We improved the implementation to speed up Kruskal's
algorithm by making union the slow part instead of find.

We've seen O(n)e0O(1) tradeoffs before...and sometimes
could compromise on O(log n) for both.

Will that work here?

Observation.
trees are often associated with O(log n) run times
the height can be as good as O(log n)
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union by rank tree

Implementing Union-Find implementation

could be n — can we do better?
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How tall are the trees? z
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union(x,y)
find the roots of x's and y's trees
make the root of the shorter tree point to the root of the taller
tree

store rank(v) = height of subtree rooted at v for each node so the shorter
tree can be found in O(1) time

only the rank of the taller tree's root may change as a result of the union —
0O(1) to update
result is O(log n) height for each tree — so find is O(log n)
idea: height of merged tree only increases if the two trees are

equally tall — that merge doubles the size of the tree so it can
happen at most log n times

- total: O(n X makeset + mlog n +m X find + n X union)
=0O(h+mlogn+mlogn+nlogn)=0((n+m) log n) _
(no improvement over union-by-rank lists) 2



Implementing Union-Find

O(log n) find(x) isn't bad, but O(1) is still better...

Observation:
could get O(1) find(x) if each node had a direct pointer to
the root

But:
updating these pointers during union is too expensive

Observation:
find(x) locates the root for every node between x and the
root

It seems a waste to throw that information away!
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Implementing Union-Find

Running time?
find(x) and thus union(x,y) are still O(height of tree)

What's the height of the trees?
path compression keeps the height of the trees short
find(x) and union(x,y) are effectively O(1)
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Implementing Union-Find

The best of both worlds: (path compression)

union(x,y)
find the roots of x's and y's trees

make the root of the shorter tree point to the root of the taller
tree

find(x)

locate the root

update the pointers for every node on the path x - root to point
directly to the root
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Implementing Union-Find

“Short™?! “Effectively”?!

based on amortized time, not worst case

an individual operation may take longer, but if a sequence of k
operations takes a total of O(k f(n)) time, we can say each
operation is O(f(n)) amortized

total time for m find(x) operations is O((m+n) log* n)
on average, O(n/m log* n) per find
with m > n (typical), this is O(log* n)
log* n = the number of successive log operations to bring n down to 1

extremely slow growing! (value < 5 for any value of n you might
encounter, and thus is effectively constant time)
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Union-Find Summary

* union-by-rank list implementation yields O((n+m) log n)
for Kruskal's algorithm
O(1) makeset(x)
O(1) find(x)
O(n log n) for a series of n union(x,y)

 union-by-rank tree implementation with path compression
yields O(m log n) for Kruskal's algorithm
O(1) makeset(x)
effectively O(2) find(x) and union(x,y)
« the tree height is a very slow-growing log*
= amortized over a series of operations

Both are an improvement over our initial O(nm) algorithm.
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