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Implementing Union-Find

A set is an unordered collection of things.
One way to implement a set is with a doubly-linked list.

• makeset(x)
– create a linked list with a single node containing x
– O(1)

• union(x,y)
– append y's list to x's list
– O(1) if you have tail pointers – set x's tail's next to point to y's head

• find(x)
– how to identify a set?  – could use the head node as the 

representative of the set
– given a node, it is O(size of list) to find the head of its list – follow 

prev pointers backwards from node to the head

→ total: O(n ✕ makeset + m log n + m ✕ find + n ✕ union)
              = O(n + m log n + nm + n) = O(nm)

– (this is much worse than graph traversal, can we do better?) CPSC 327: Data Structures and Algorithms  •  Spring 2024 126

Implementing Union-Find

Can we do better?  Find is the slow part…
• what's better than O(n)?  → O(1)

– if every node also had a pointer directly to the head, find(x) could 
be done in constant time!

New implementation: singly-linked list with tail pointer and 
each node also pointing directly to the head.
• makeset(x)

– O(1)

• union(x,y)
– O(1) to append...but O(size of y) to update all head pointers in y

• find(x)
– O(1)

→ total: O(n ✕ makeset + m log n + m ✕ find + n ✕ union)
             = O(n + m log n + m + n2) = O(m log n + n2)

– (somewhat better...)

(can actually store head pointers 
instead of prev pointers since the only 
reason to back up was to find the head)
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Implementing Union-Find

Can we do better?  Union is the slow part – what if we 
updated as few head pointers as possible?

• union(x,y)
– O(1) to append the smaller list to the larger list...but still O(size 

of smaller list) to update head pointers in the smaller list
• can store list sizes so it is possible to find the smaller list in O(1)

→ total: O(n ✕ makeset + m log n + m ✕ find + n ✕ union)
– observation: in the worst case O(size of smaller list) is O(n), but 

we know something about the series of unions
• each time we union and the head pointer for a node is updated, the node 

is going into a set at least twice as big as it come from
• this can happen at most log n times if there's a total of n elements

– thus n unions with appending the smaller list is O(n log n) 
instead of O(n2)

             = O(n + m log n + m + n log n) = O((n+m) log n)

– an improvement for sparse graphs!

union by rank list
implementation
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Implementing Union-Find

O((n+m) log n) for Kruskal's algorithm is pretty good – can 
we do better?

Observation.
• sorting the edges by weight requires O(m log n), which 

will dominate O(n log n) as long as the graph is 
connected
– improving the data structure will result in elapsed time gains, but 

not change the big-Oh

However… 
• union-find has applications beyond Kruskal's algorithm

– greater efficiency in union-find operations may make a difference 
there
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Maze Creation

In a good maze, every room is reachable from every other 
and there's only one possible path from start to goal.
How to generate a random maze?

start with all of the walls and 
every room in a separate set

while there is more than one set left
  - choose a random wall
  - if the rooms on either side belong to 
different sets, knock down the wall
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Implementing Union-Find

We improved the implementation to speed up Kruskal's 
algorithm by making union the slow part instead of find.

We've seen O(n)↔O(1) tradeoffs before...and sometimes 
could compromise on O(log n) for both.

Will that work here?

Observation.
• trees are often associated with O(log n) run times

– the height can be as good as O(log n)
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Implementing Union-Find

Idea:
Represent a set as a directed tree.

• makeset(x)
– create a tree with a single node containing x
– O(1)

• union(x,y)
– find the roots of x's and y's trees
– make y's root point to x's root
– O(find)

• find(x)
– use the root as the representative element
– given a node, it is O(height of tree) to find the root of its tree
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Implementing Union-Find

How tall are the trees?
• could be n – can we do better?

• union(x,y)
– find the roots of x's and y's trees
– make the root of the shorter tree point to the root of the taller 

tree
• store rank(v) = height of subtree rooted at v for each node so the shorter 

tree can be found in O(1) time
• only the rank of the taller tree's root may change as a result of the union – 

O(1) to update

• result is O(log n) height for each tree – so find is O(log n)
– idea: height of merged tree only increases if the two trees are 

equally tall – that merge doubles the size of the tree so it can 
happen at most log n times

→ total: O(n ✕ makeset + m log n + m ✕ find + n ✕ union)
          = O(n + m log n + m log n + n log n) = O((n+m) log n)

– (no improvement over union-by-rank lists)

union by rank tree
implementation
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Implementing Union-Find

O(log n) find(x) isn't bad, but O(1) is still better...

Observation:
• could get O(1) find(x) if each node had a direct pointer to 

the root
But:
• updating these pointers during union is too expensive

Observation:
• find(x) locates the root for every node between x and the 

root
It seems a waste to throw that information away!
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Implementing Union-Find

The best of both worlds:  (path compression)

• union(x,y)
– find the roots of x's and y's trees
– make the root of the shorter tree point to the root of the taller 

tree

• find(x)
– locate the root
– update the pointers for every node on the path x→root to point 

directly to the root
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Implementing Union-Find

Running time?
• find(x) and thus union(x,y) are still O(height of tree)

What's the height of the trees?
• path compression keeps the height of the trees short
• find(x) and union(x,y) are effectively O(1)

CPSC 327: Data Structures and Algorithms  •  Spring 2024 136

Implementing Union-Find

“Short”?!  “Effectively”?!

• based on amortized time, not worst case
– an individual operation may take longer, but if a sequence of k 

operations takes a total of O(k f(n)) time, we can say each 
operation is O(f(n)) amortized

• total time for m find(x) operations is O((m+n) log* n)
– on average, O(n/m log* n) per find
– with m > n (typical), this is O(log* n)

• log* n = the number of successive log operations to bring n down to 1
• extremely slow growing!  (value < 5 for any value of n you might 

encounter, and thus is effectively constant time)
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Union-Find Summary

• union-by-rank list implementation yields O((n+m) log n) 
for Kruskal's algorithm
– O(1) makeset(x)
– O(1) find(x)
– O(n log n) for a series of n union(x,y)

• union-by-rank tree implementation with path compression 
yields O(m log n) for Kruskal's algorithm
– O(1) makeset(x)
– effectively O(1) find(x) and union(x,y)

• the tree height is a very slow-growing log*
• amortized over a series of operations

Both are an improvement over our initial O(nm) algorithm.


