Lab Ticket: Hand In at Lab Tomorrow. ANSWERS

1. This is a good problem to see if you understand the concepts we have been studying. Fill in the table using the information given. For some, several correct answers are possible.

a	$\lim _{x \rightarrow a^{-}} f(x)$	$\lim _{x \rightarrow a^{+}} f(x)$	$\lim _{x \rightarrow a} f(x)$	$f(a)$	Left Cont	Right Cont	Cont	RD	VA
-1	0	0	0	DNE	No	No	No	Yes	No
1	4	1	DNE	4	Yes	No	No	No	No
2	2	2	2	Not 2	No	No	No	Yes	No
3	3	3	3	Not 3	No	No	No	Yes	No
4	∞ or $-\infty$	1	DNE	1	No	Yes	No	No	Yes
5	$-\infty$	$-\infty$	$-\infty$	Not $\pm \infty$	No	No	No	No	Yes
6	1	1	1	1	Yes	Yes	Cont	No	No

2. Evaluate these limits. A variety of techniques is required. Use $+\infty$ or $-\infty$, if appropriate.
a) $\lim _{x \rightarrow 0^{-}} \frac{x-1}{x^{2}(x+8)}=\lim _{x \rightarrow 0^{-}} \frac{\overbrace{x-1}^{-1}}{\underbrace{x^{2}(x+8)}_{\left(0^{+}\right)^{2} \cdot 8=0^{+}}}=-\infty$
b) $\lim _{x \rightarrow 1^{+}} \frac{x-2}{1-\sqrt{x}}=\lim _{x \rightarrow 1^{+}} \frac{\overbrace{x-2}^{-1}}{\underbrace{1-\sqrt{x}}_{0^{-}}}=+\infty$
c) $\lim _{x \rightarrow-\infty} \frac{3 x-2}{\sqrt{4 x^{2}+1}} \stackrel{\text { HP }}{=} \lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{4 x^{2}}} \lim _{x \rightarrow-\infty} \frac{3 x}{|2 x|} \stackrel{\mathrm{x} \leq 0}{=} \lim _{x \rightarrow-\infty} \frac{3 x}{-2 x}=-\frac{3}{2}$

3. Bonus: Like a Quiz/Test Question.

a) Carefully explain where $f(x)=\frac{x^{2}+5 x+6}{x^{2}+2 x-3}$ is NOT continuous. Hint: What type of function is this?

Factor:

$$
f(x)=\frac{x^{2}+5 x+6}{x^{2}+2 x-3}=\frac{(x+2)(x+3)}{(x+3)(x-1)}
$$

f is rational; so it is continuous except at $x=-3$ and 1 where it is undefined.
b) Using limits determine where $f(x)$ has (1) vertical asymptotes, and (2) removable discontinuities. [Where should you look.] Use appropriate limits to justify each. See the definitions on p. 1.

At $x=-3$:

$$
\lim _{x \rightarrow-3} f(x)=\lim _{x \rightarrow-3} \frac{(x+2)(x+3)}{(x+3)(x-1)}=\lim _{x \rightarrow-3} \frac{x+2}{x-1}=\frac{-1}{-4}=\frac{1}{4}
$$

So $x=-3$ is an RD since $\lim _{x \rightarrow-3} f(x)$ exists but does not equal $f(-3)$ which DNE.

However $x=1$ is a VA because checking the one-sided limits:

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{(x+2)(x+3)}{(x+3)(x-1)}=\lim _{x \rightarrow 1^{+}} \frac{\overbrace{x+2}^{3}}{\underbrace{x-1}_{0^{+}}}=+\infty
$$

OR

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{(x+2)(x+3)}{(x+3)(x-1)}=\lim _{x \rightarrow 1^{-}} \frac{\overbrace{\underbrace{x+2}_{0^{-}}}^{3}}{x-1}=+\infty
$$

In either case, f has a VA at $x=1$ since a one-sided limit is infinite there.
c) Check your understanding. Give an equation of a rational function with a VA at $x=-2$ and a removable discontinuity at $x=6$. (Hint: Look back at what happened in the first parts of this problem to create RD's and VA's.)

Use a rational function such as $f(x)=\frac{x-6}{(x+2)(x-6)}$.

