Lab Ticket: Hand In at Lab Tomorrow. ANSWERS

1. This is a good problem to see if you understand the concepts we have been studying. Fill in the table using the information given. For some, several correct answers are possible.

a	$\lim_{x \to a^-} f(x)$	$\lim_{x \to a^+} f(x)$	$\lim_{x \to a} f(x)$	f(a)	Left Cont	Right Cont	Cont	RD	VA
-1	0	0	0	DNE	No	No	No	Yes	No
1	4	1	DNE	4	Yes	No	No	No	No
2	2	2	2	Not 2	No	No	No	Yes	No
3	3	3	3	Not 3	No	No	No	Yes	No
4	∞ or $-\infty$	1	DNE	1	No	Yes	No	No	Yes
5	$-\infty$	$-\infty$	$-\infty$	Not $\pm \infty$	No	No	No	No	Yes
6	1	1	1	1	Yes	Yes	Cont	No	No

2. Evaluate these limits. A variety of techniques is required. Use $+\infty$ or $-\infty$, if appropriate.

a)
$$\lim_{x \to 0^-} \frac{x-1}{x^2(x+8)} = \lim_{x \to 0^-} \underbrace{\frac{x-1}{x-1}}_{(0^+)^2 \cdot 8 = 0^+} = -\infty$$

b)
$$\lim_{x \to 1^+} \frac{x-2}{1-\sqrt{x}} = \lim_{x \to 1^+} \underbrace{\underbrace{x-2}_{1-\sqrt{x}}}_{0^-} = +\infty$$

c)
$$\lim_{x \to -\infty} \frac{3x-2}{\sqrt{4x^2+1}} \stackrel{\text{HP}}{=} \lim_{x \to -\infty} \frac{3x}{\sqrt{4x^2}} \lim_{x \to -\infty} \frac{3x}{|2x|} \stackrel{\text{x} \le 0}{=} \lim_{x \to -\infty} \frac{3x}{-2x} = -\frac{3}{2}$$

3. Bonus: Like a Quiz/Test Question.

a) Carefully explain where $f(x) = \frac{x^2 + 5x + 6}{x^2 + 2x - 3}$ is NOT continuous. Hint: What type of function is this?

Factor:

$$f(x) = \frac{x^2 + 5x + 6}{x^2 + 2x - 3} = \frac{(x+2)(x+3)}{(x+3)(x-1)}$$

f is rational; so it is continuous except at x = -3 and 1 where it is undefined.

b) Using limits determine where f(x) has (1) vertical asymptotes, and (2) removable discontinuities. [Where should you look.] Use appropriate limits to justify each. See the definitions on p. 1.

At x = -3:

$$\lim_{x \to -3} f(x) = \lim_{x \to -3} \frac{(x+2)(x+3)}{(x+3)(x-1)} = \lim_{x \to -3} \frac{x+2}{x-1} = \frac{-1}{-4} = \frac{1}{4}.$$

So x = -3 is an RD since $\lim_{x \to -3} f(x)$ exists but does not equal f(-3) which DNE.

However x = 1 is a VA because checking the one-sided limits:

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{(x+2)(x+3)}{(x+3)(x-1)} = \lim_{x \to 1^+} \frac{x+2}{x-1} = +\infty$$

OR

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{(x+2)(x+3)}{(x+3)(x-1)} = \lim_{x \to 1^{-}} \underbrace{\frac{x+2}{x-1}}_{0^{-}} = +\infty$$

In either case, f has a VA at x = 1 since a one-sided limit is infinite there.

c) Check your understanding. Give an equation of a rational function with a VA at x = -2 and a removable discontinuity at x = 6. (Hint: Look back at what happened in the first parts of this problem to create RD's and VA's.)

Use a rational function such as $f(x) = \frac{x-6}{(x+2)(x-6)}$.