Math 130: Hand in at Lab 10. Name: ,)fv»swevé

-2. Definition. Let f be a function defined on an interval I containing the point c.
a) f has an absolute (global) maximum at c if f(c) > f(z) for all z in D. The number f(c) is the maximum value
of f.
b) f has an absolute (global) minimum at ¢ if f(c) < f(z) for all z in D. The number f(c) is the minimum value
of f.
c) If f(c) > f(x) for all z in some open interval containing ¢, then f(c) is a relative (local) maximum value of f. (Or
f has a local max at ¢.)

d) If f(c) < f(z) for all x in some open interval containing c, then f is a relative (local) minimum value of f. (Or
f has a local min at ¢.)

-1. MVT: The Mean Value Theorem. Assume that
1. f is continuous on the closed interval {a, b];

2. f is differentiable on the open interval (a,b);

Then there is some point ¢ in (a,b) so that f/'(c) =

0. EVT: Extreme Value Theorem. Let f be a continuous function on a closed interval [a,b]. Then f has both an
absolute maximum value and an absolute minimum value on the interval [a, b].

1. Designer Functions. Draw a function that satisfies the given conditions or explain why this is impossible. Make
sure that your function is defined (has an output value) for every z in the given interval. [Each part is a separate problem.]

a) A continuous function on [0, 10] which has an absolute min at z = 2 and has relative but not absolute max at z = 6.
b) A function on [0, 6] which has no absolute max.

c) A continuous function on (0,6) which has no absolute max.
d) A function on [0, 6] for which f(0) = 3 and f(6) = —2 and which is never 0.

e) A differentiable function on [0,6] which has no absolute max. (Think: If f is differentiable, what else can you say
about it?)
f) A function which illustrates the Mean Value Theorem. (Mark the tangent and secant lines.)
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2. Suppose that one leg of a right triangle has a fixed length of 8 cm. Let z denote the other leg of the triangle. Assume
that dz/dt = 2cm/sec. See figure below.

a) If h represents the length of the hypotenuse, find dh/dt when z = 6 cm.
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b) If ¢ is the angle shown, find df/dt when z = 6 cm.
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c) If A represents the area, find dA/dt when z = 6 cm. IE X= é M«é / 5
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3. a) Let f(z) = %:1;4 + %aza — z?. Determine the absolute extreme points on [—1,2]. WeBWorK Day28 #1.
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b) State the name of the theorem that you used: \o ge& /EW’\T‘?W%L T(&M



