- -2. Definition. Let f be a function defined on an interval I containing the point c.
 - a) f has an absolute (global) maximum at c if $f(c) \ge f(x)$ for all x in D. The number f(c) is the maximum value of f.
 - b) f has an absolute (global) minimum at c if $f(c) \le f(x)$ for all x in D. The number f(c) is the minimum value of f.
 - c) If $f(c) \ge f(x)$ for all x in some open interval containing c, then f(c) is a relative (local) maximum value of f. (Or: f has a local max at c.)
 - d) If $f(c) \le f(x)$ for all x in some open interval containing c, then f is a relative (local) minimum value of f. (Or: f has a local min at c.)
- -1. MVT: The Mean Value Theorem. Assume that
 - 1. f is continuous on the closed interval [a, b];
 - 2. f is differentiable on the open interval (a, b);

Then there is some point c in (a,b) so that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- **0. EVT: Extreme Value Theorem.** Let f be a continuous function on a closed interval [a, b]. Then f has both an absolute maximum value and an absolute minimum value on the interval [a, b].
- 1. Designer Functions. Draw a function that satisfies the given conditions or explain why this is impossible. Make sure that your function is defined (has an output value) for every x in the given interval. [Each part is a separate problem.]
 - a) A continuous function on [0, 10] which has an absolute min at x = 2 and has relative but not absolute max at x = 6.
 - b) A function on [0, 6] which has no absolute max.
 - c) A continuous function on (0,6) which has no absolute max.
 - d) A function on [0,6] for which f(0)=3 and f(6)=-2 and which is never 0.
 - e) A differentiable function on [0,6] which has no absolute max. (Think: If f is differentiable, what else can you say about it?)
 - f) A function which illustrates the Mean Value Theorem. (Mark the tangent and secant lines.)

- 2. Suppose that one leg of a right triangle has a fixed length of 8 cm. Let x denote the other leg of the triangle. Assume that dx/dt = 2cm/sec. See figure below.
 - a) If h represents the length of the hypotenuse, find dh/dt when x=6 cm.

Given
$$\frac{dx}{dt} = 2$$
 Find $\frac{dh}{dt}\Big|_{x=6}$ Relation $h^2 = x^2 + 8^2$

Rate: $2hdh = 2 \times \frac{dx}{dt}$. When $x=6$ $h = \sqrt{8^2+6^2} = 10^{-6}$

$$\frac{dh}{dt}\Big|_{x=6} = \frac{x}{h} \frac{dx}{dt} = \frac{6}{10}(2) = 1.12 \text{ cm/s}$$

b) If θ is the angle shown, find $d\theta/dt$ when x=6 cm.

Find
$$d\theta$$
 | $x=6$ | Relation! $tan \theta = \frac{x}{8}$

$$d\theta = \frac{1}{1+(\frac{x}{8})^2} \cdot \frac{1}{8} \cdot \frac{dx}{dt}$$

$$d\theta = \frac{1}{1+(\frac{x}{8})^2} \cdot \frac{1}{8} \cdot \frac{dx}{dt}$$
c) If A represents the area, find dA/dt when $x=6$ cm.
$$d\theta \mid x=6 = \frac{1}{1+(\frac{x}{8})^2} \cdot \frac{1}{8} \cdot 2 = \frac{10}{100} \cdot \frac{4}{25}$$

$$dt \mid x=6 = \frac{1}{1+(\frac{x}{8})^2} \cdot \frac{1}{8} \cdot 2 = \frac{10}{100} \cdot \frac{4}{25}$$

Find
$$\frac{dA}{dt}|_{X=6}$$
. Relation $A = \frac{1}{2} \cdot 8 \cdot X = 4x$

Rate $\frac{dA}{dt} = 4 \frac{dA}{dt}$
 $\frac{dA}{dt}|_{X=6} = 4(2) = 8 \frac{dA}{dt}|_{X=6}$

3. a) Let $f(x) = \frac{1}{4}x^4 + \frac{1}{3}x^3 - x^2$. Determine the absolute extreme points on [-1,2]. WeBWork Day28 #1.

1) Determine CP's,
$$f'(x) = x^3 + x^2 - 2x = x(x^2 + x - 2) = x(x - 1)(x + 2) = 0$$

CP's', $x = 0$, 1 , -2 not in interval

Evaluate f at CP's; $f(0) = 0$
 $f(1) = \frac{1}{4} + \frac{1}{3} - 1 = -\frac{13}{12}$

Evaluate f at Evaluate; $f(-1) = \frac{1}{4} - \frac{1}{4} = 1 = -\frac{13}{12}$. Ahs Mun

Evaluate f at Endpts: f(-1)= 4-3-1=-13/12 - Ahs Mun f(z) = 4+8/3-4=8/2 (- Als Max

b) State the name of the theorem that you used: Closed Interval Thu