Hand In. Name: Augusts Do WeBWork Set Day 32 due Tuesday night. - 1. (Similar to WeBWorK Set Day 32 #1). A small box with a square base and no top is to hold a volume of 256 cc. What dimensions for the box will minimize the materials for the 4 sides and bottom? Justify your answer. Solution: Using the guidelines - a) Optimize (Minimize?, Maximize?): - b) Constraint: Subject to: $\sqrt{0}$ ume = $x^2y = 256$ - $y = \frac{256}{x^2}$, x > 0 or $(0, \infty)$ solve for yc) Eliminate (if necessary): - Domain: $S = 4 \times \left(\frac{256}{x^2}\right) + x^2 = 1024 + x^2$ $(0,\infty)$ - e) Solve and Justify: $$S' = \frac{-1024}{x^{2}} + 2x = 0$$ $$2x = \frac{1024}{x^{2}}$$ $$2x^{3} = \frac{1024}{x^{2}}$$ $$x^{3} = \frac{512}{x^{2}}$$ Justify: USE SCPT. There's only I critical point, x=8 in (0,00). By the first Derivative test f' (--+++ there's a relative min @ X=8: By SCPT there's an Absolute Min @ x=8 cm y = 256 = 4 on - 2. (WeBWork Set Day 32 #4) US Postal regulations usps.com/consumers/domestic.htm state: "Priority Mail is used for documents, gifts, and merchandise. The maximum size is 108 inches or less in combined length (ℓ) and distance around the thickest part (Girth, G)." Find the dimensions of the box with square base of largest volume that can be sent Priority Mail. Justify your answer. Solution: Using the guidelines - a) Optimize (Minimize?, Maximize?): Maximize Vol = x21 - b) The Girth is the perimeter around the square end, not the area of the square end (see figure). So Subject to Girth + length = 108. So $108 = 4 \times 108$ - c) Eliminate l. l = 108-4x < lambda x cannot be negative. Smallest x = 0, largest x = 27 - d) Rewrite: $V = \chi^2 (108-4\chi)$ = $108\chi^2 - 4\chi^3$ Domain: [0,27] *Closed... use CIT e) Solve and Justify: $V'=216\times-12\times^2=-12\times(\times-18)=0$; $\chi=0$, 18 The domain is a closed underval. Use CIT to find the Abs Max. Check Critical Pts: $V(18)=18^2(108-72)=18^2\cdot36=11$, LAAu3 End pts: V(0)=0 Abs Max. V(27)=272(108-4.27)=0 Dinensions: x=18 in L=108-4(18)=36 mi a) Optimize (Minimize?, Maximize?): b) Constraint: Subject to: $$\chi^2 = \chi^2 + 30^2$$ $$\chi = \sqrt{\chi^2 + 900}$$ c) Eliminate (if necessary): $$C = 60 - x + 2\sqrt{x^2 + 900}$$ e) Solve and Justify: $$C' = -1 + 2(\frac{1}{2})(x^2 + 900)^{-1/2}(2x)$$ $$C' = -1 + \frac{2x}{\sqrt{x^2 + 900}} = 0$$ So $$\frac{2x}{\sqrt{x^2+900}} = 1$$, or $2x = \sqrt{x^2+900}$ Square both sides $4x^2 = x^2+900$ $3x^2 = 900$ $x^2 = 300 \Rightarrow x = \sqrt{300}$. That is a second when $x = \sqrt{300}$ and Use CIT to fund Abs Min. Check @ critical point (s): C(√300) = 60-2√300+900 ≈ 111.96 End pts: $((0) = 60 - 0 + 2\sqrt{900} = 120$ $((60) = 60 - 60 + 2\sqrt{3600 + 900} \approx 134.2$ - **4.** Below is the graph of f'(x), **not** f(x). - a) Translate this graphical information into number line information for f' and f''. For example, where f' is above the x-axis, f' is positive. Where the graph of f' is decreasing, that's where f'' is negative, where f' has a horizontal tangent, that's where f'' = 0. Here are some specific examples - At x = 3.5: Note f'(3.5) = 0 (the graph crosses the x-axis and f''(3.5) is negative because f'(x) is decreasing there Mark each on the corresponding number line. - At x=1: Note f'(1) is positive (the graph is above the the x-axis and f''(1)=0 because f'(x) has a horizontal tangent there. Mark each on the corresponding number line. - Continue in the same manner. You should be able to fill in each number line where it is 0, +, and -. - b) Based on the number line information (relative extrema, inflections, etc.), draw a possible graph of the original function y = f(x). Start your graph at the indicated point •. 5. Extra Credit: Like WeBWorK Set Day 32 #5: The manager of a large apartment complex knows from experience that 80 units will be occupied if the rent is 372 dollars per month. A market survey suggests that, on the average, one additional unit will remain vacant for each 6 dollar increase in rent. Similarly, one additional unit will be occupied for each 6 dollar decrease in rent. What rent should the manager charge to maximize revenue? Maximize Revenue = (372+6x). (80-x) tprice 1 t # units rented L' both must be non-negative (or positive) So: Domain : 372 +6x 70, 6x 2-372, x2 -62 And 80-x70, 807x Domain: [-62,80] < USECIT Solve R = (372+6x)(80-x) on [-62, 80]P' = 6(80-x) + (372+6x)(-1) = 480 - 6x - 372 - 6x = 0use CIT. (or use SCPT). Check @ Crit Pt: R(9) = (372+6.9)(80-9)=30,246 (a) UTIT 10: R(-62) = (372 - 6.62)(86 + 62) = 0(a) End pts: R(-62) = (372 + 6.80)(80 - 80) = 0 R(80) = (372 + 6.80)(80 - 80) = 0When x = 0 Price = 5324