Math 130, Day 41. Hand In at Lab. Answers

1. (WeBWorK #3) A stone was dropped off a cliff and hit the ground with speed 120 ft/s. What was the height of the cliff?

Solution. The acceleration is constant due to gravity: a = -32 ft/s². The initial velocity is $v_0 = 0$ ft/s because the stone is dropped. We are trying to find the initial position, s_0 . We know that the velocity is -120 ft/s when it hits the ground. We also know that

$$v(t) = -at + v_0 = -32t$$

The time it hits the ground is t^* where

$$v(t^*) = -32t = -120$$
, so $t^* = \frac{120}{32} = \frac{15}{4}$ s.

The general position function is

$$s(t) = \frac{at^2}{2} - v_0t + s_0 = -16t^2 + s_0$$

We know the position at time t^* is $s(t^*) = 0$ (hits the ground). So

$$s(t^*) = s(\frac{15}{4}) = -16(\frac{15}{4})^2 + s_0 = 0$$
, so $s_0 = 16(\frac{15}{4})^2 = 225$ ft.

- 2. (WeBWorK #2) Acceleration due to gravity is approximately -1.6 m/sec² on the moon (roughly) one-sixth of what it is on earth. Assume Neil Armstrong (do you know who he was?) threw a ball upward from the moon's surface at a velocity of 24 m/sec.
 - a) Find the position as a function of time.

Solution. Use constant acceleration, with $a = -1.6 \text{ m/s}^2$, $v_0 = 0 \text{ m/s}$, and $s_0 = 0 \text{ m}$.

$$s(t) = \frac{at^2}{2} - v_0t + s_0 = -0.8t^2 + 24t.$$

b) When did the ball hit the ground?

Solution. The ball hits the ground when s(t) = 0 m.

$$s(t) = -0.8t^2 + 24t = -t(0.8t - 24) = 0$$
, so $t = 24/0.8 = 30$ s (not 0).

c) What was the maximum height of the ball? First find the time of the maximum, then the height.

Solution. The maximum height occurs when the velocity is 0. But

 $v(t) = at + v_0 = -1.6t + 24 = 0$, so t = 24/1.6 = 15 s.

Then

$$s(15) = -0.8(15)^2 + 24(15) = 180 \,\mathrm{m}.$$