Math 130, Day 41. Hand In at Lab. Answers

1. (WeBWorK \#3) A stone was dropped off a cliff and hit the ground with speed $120 \mathrm{ft} / \mathrm{s}$. What was the height of the cliff?

Solution. The acceleration is constant due to gravity: $a=-32 \mathrm{ft} / \mathrm{s}^{2}$. The initial velocity is $v_{0}=0 \mathrm{ft} / \mathrm{s}$ because the stone is dropped. We are trying to find the initial position, s_{0}. We know that the velocity is $-120 \mathrm{ft} / \mathrm{s}$ when it hits the ground. We also know that

$$
v(t)=-a t+v_{0}=-32 t
$$

The time it hits the ground is t^{*} where

$$
v\left(t^{*}\right)=-32 t=-120, \text { so } t^{*}=\frac{120}{32}=\frac{15}{4} \mathrm{~s} .
$$

The general position function is

$$
s(t)=\frac{a t^{2}}{2}-v_{0} t+s_{0}=-16 t^{2}+s_{0} .
$$

We know the position at time t^{*} is $s\left(t^{*}\right)=0$ (hits the ground). So

$$
s\left(t^{*}\right)=s\left(\frac{15}{4}\right)=-16\left(\frac{15}{4}\right)^{2}+s_{0}=0, \text { so } s_{0}=16\left(\frac{15}{4}\right)^{2}=225 \mathrm{ft} .
$$

2. (WeBWorK \#2) Acceleration due to gravity is approximately $-1.6 \mathrm{~m} / \mathrm{sec}^{2}$ on the moon (roughly) one-sixth of what it is on earth. Assume Neil Armstrong (do you know who he was?) threw a ball upward from the moon's surface at a velocity of $24 \mathrm{~m} / \mathrm{sec}$.
a) Find the position as a function of time.

Solution. Use constant acceleration, with $a=-1.6 \mathrm{~m} / \mathrm{s}^{2}, v_{0}=0 \mathrm{~m} / \mathrm{s}$, and $s_{0}=0 \mathrm{~m}$.

$$
s(t)=\frac{a t^{2}}{2}-v_{0} t+s_{0}=-0.8 t^{2}+24 t .
$$

b) When did the ball hit the ground?

Solution. The ball hits the ground when $s(t)=0 \mathrm{~m}$.

$$
s(t)=-0.8 t^{2}+24 t=-t(0.8 t-24)=0, \text { so } t=24 / 0.8=30 \mathrm{~s}(\text { not } 0) .
$$

c) What was the maximum height of the ball? First find the time of the maximum, then the height.

Solution. The maximum height occurs when the velocity is 0 . But

$$
v(t)=a t+v_{0}=-1.6 t+24=0, \text { so } t=24 / 1.6=15 \mathrm{~s} .
$$

Then

$$
s(15)=-0.8(15)^{2}+24(15)=180 \mathrm{~m}
$$

