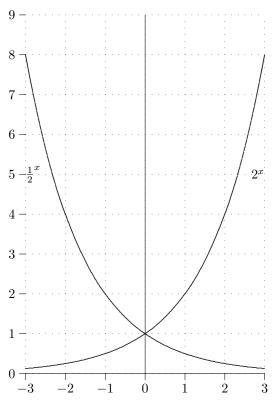
Math 130 Day 16

Homework and Practice.

Today we will explore the exponential function $y = e^x$ and its derivative. This is the easiest of the derivative rules!


- 1. a) Review Section 3.3. Read about the exponential and higher-order derivatives on pages 147–150. Then read ahead in Section 3.4 about the product and quotient rules through page 156.
 - b) You should be able to do all of these: Page 151f #21–27 odd, 29 (simplify first), 31 (simplify first), 41, 43, 47 (good questions!), 51, 71, and 75.

Class Work: Derivatives of Exponentials

1. Fill in the tables below for the values of $y = a^x$. Then draw the graphs. What is the relationship between corresponding pairs of graphs?

x	2^x	3^x	1^x	$\frac{1}{2}^x$	$\frac{1}{3}^x$
-3	$\frac{1}{8}$			8	
-2	$\frac{1}{4}$			4	
-1	$\frac{1}{2}$			2	
0	1			1	
1	2			$\frac{1}{2}$	
2	4			$\frac{1}{4}$	
3	8			$\frac{1}{8}$	

h	$\frac{(2^h-1)}{h}$
.01	
.0001	
.000001	
001	
000001	

2. We will know the derivative of a^x once we determine $\lim_{h\to 0} \frac{a^h-1}{h}$. Estimate this limit for various values of a using your calculator with h=0.000001. In other words evaluate: $\frac{a^{0.000001}-1}{0.000001}$.

a	$\frac{1}{3}$	$\frac{1}{2}$	1	2	3	2.5
$\lim_{h \to 0} \frac{a^h - 1}{h}$						

3. Try to locate a value of a so that $\lim_{h\to 0} \frac{a^h-1}{h} = 1$. Estimate this limit using h = 0.000001. From the table above, should you start with a > 3? Between 2 and 3? Less than 2?

Your a			
$\lim_{h \to 0} \frac{a^h - 1}{h}$			

Solution: (a) f'(t) = 6t + 2. (b) **velocity** at time t = 1: f'(1) = 8. (c) Tangent: y = 2 + 8(x - 1) = 8x - 6.

Office Hours (LN 301/301.5): M 3:30-4:30, Tu 11:00-1:00, W 12:15-1:15, F 1:30-2:30. Other times by appointment. Math Intern: Sun through Thurs: 3:00-6:00, 7:00-10:00pm. Website: Use the links at the course homepage on Canvas or go to my course Webpage: http://math.hws.edu/~mitchell/Math130F16/index.html.

WeBWorK

New set: WeBWorK Day16A due Thursday. Remember to finish WeBWorK Day 15.

One Minute Self Quiz. Answers on the other side.

1. a) Let $f(t) = 3t^2 + 2t - 3$ represent the **position** of an object at time t. Find f'(t).

b) What is the object's velocity at time t = 1. Use your work in part (a).

c) What is the equation of the tangent line at t = 1.

Hand In.

You need to do lots of differentiation practice: To use the power rule formula, you need to use exponent notation properly. For example if $f(x) = \frac{3}{x^{1/2}} + \frac{1}{2x}$, this can be rewritten as $f(x) = 3x^{-1/2} + \frac{1}{2}x^{-1}$. Similarly, $2\sqrt[3]{x^5} = 2x^{5/3}$.

Use proper mathematical grammar. Remember when taking derivatives **DO NOT** write expressions such as

$$f(x) = 6x^2 + 2x$$
 This is wrong $12x + 2$.

The original function is NOT the same as its derivative. What you mean is

$$f(x) = 6x^2 + 2x$$
 and so $f'(x) = 12x + 2$ or else write $\frac{d}{dx}(6x^2 + 2x) = 12x + 2$.

The problems are on the next page.

1. Use proper notation. Use the basic derivative rules we have developed to find the derivatives of

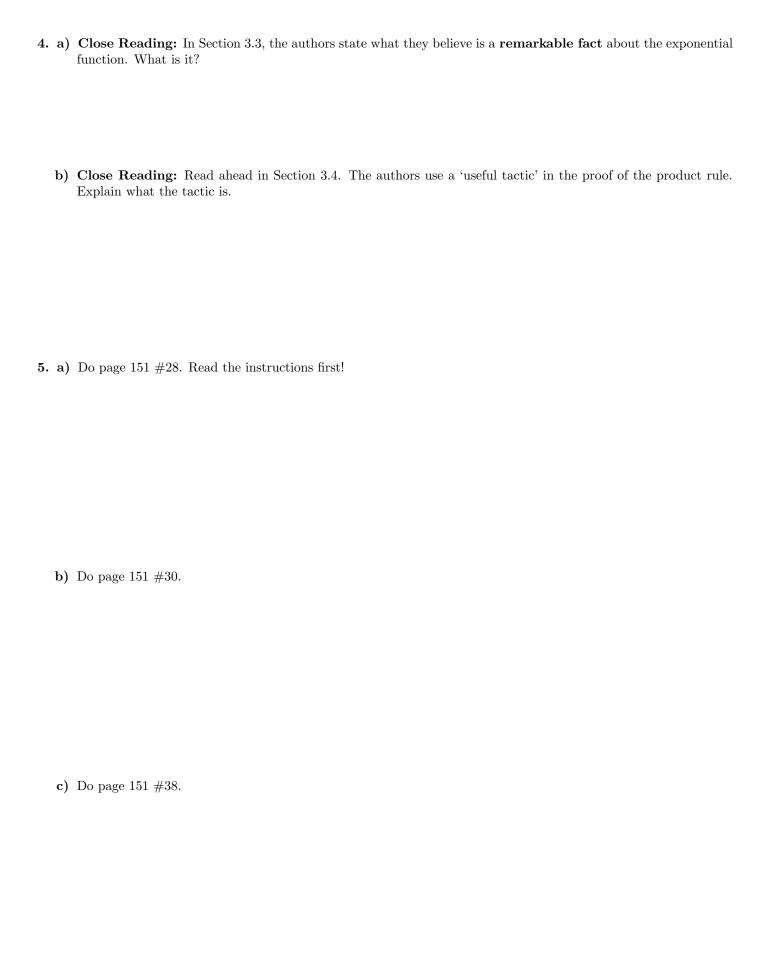
a)
$$f(x) = 6x^8 + \frac{x^{-12}}{2} - 7$$

f)
$$g(w) = \frac{1}{4\sqrt[3]{w^5}}$$
 (first rewrite in exponent form)

g)
$$f(t) = \frac{4}{t^8} - 3e^t + t$$

b)
$$g(x) = 9x^{12/5} + 9x^{-12/5} + \pi$$

h) Suppose in the previous part the function
$$f(t)$$
 represents the position of an object at time t . What is the instantaneous velocity at time $t = 1$?


c)
$$s(t) = 2t^{-3/5} - \frac{e^t}{4}$$

d)
$$s(x) = \frac{5e^x}{2} - 3\sqrt[7]{x^4}$$
 (first rewrite in exponent form)

a)
$$r(x) = \frac{1}{5x^{11}}$$

e)
$$q(x) = 6\sqrt{x} - 2e^x + 7$$

b)
$$s(x) = \frac{5}{x^{11}}$$
.

