Math 130 Day 21

Office Hours (LN 301/301.5): M 3:30-4:30, Tu 11:00-1:00, W 12:15-1:15, F 1:30-2:30. Other times by appointment. Math Intern: Sun through Thurs: 3:00-6:00, 7:00-10:00pm. Website: Use the links at the course homepage on Canvas or go to my course Webpage: http://math.hws.edu/~mitchell/Math130F16/index.html.

Practice

- 1. Read/Re-read Chapter 3.9 on Derivatives of Logs and Exponentials. Review the online notes. We will finish this next time. Also review Implicit Differentiation in Chapter 3.8.
- 2. Page 211 #3, 9, 11, 15 (simplify first with a log rule), 17, 19(a classic).
 a) Page 211 #23, 25, 27
- 3. If we get this far: Find the derivatives of these three exponentials (answers below)

a)
$$x^3 5^x$$
 b) $4^{6 \cos x}$ **c)** $9^{e^{2x} \tan x}$

d) Find the tangent line to the curve in (a) at the point (2,1) Answers: Use $D_x(b^u) = b^u \frac{du}{dx}$.

a)
$$D_x(x^{3}5^x) = 3x^{2}5^x + x^{3}5^x \ln 5 = x^{2}5^x(3 + x \ln 5)$$

b) $D_x(4^{6\cos x}) = -4^{6\cos x}6\sin x \ln 4$
c) $D_x(9^{e^2x\tan x}) = 9^{e^2x\tan x}(2e^{2x}\tan x + e^{2x}\sec^2 x)$

Hand In Next Time

Do WeBWorK Set Day 21. Due Thursday night. Remember Set Day 20 (Chain Rule Review) due Wednesday.

1. Use implicit differentiation to find $\frac{dy}{dx}$ and then etermine the tangent line to $y^3 + \ln(y^2) = x^3 + x + 1$ at (-1, 1).

2. Compute and compare the derivatives of

a)
$$\frac{d}{dx} \left[\ln(x^6) \right]$$
 b) $\frac{d}{dx} \left[(\ln x)^6 \right]$

3. Determine and simplify the derivative of $f(t) = \frac{3 + \ln t}{e^{4t}}$.

4. Find and simplify the derivative of $g(t) = 8 - 7 \ln(\cos t)$ (where $t \in (-\pi/2, \pi/2)$ so that g is defined).

5. Find the derivative of $g(x) = \ln(x^2 + 9)^{1/2}$. Hint: Simplify using a log law before differentiating.

6. If $p(x) = 7x^5 \ln(6x)$, then p'(x) =

7. Find the derivative of $g(x) = \ln\left(\frac{2x^3+1}{x^2+3x+1}\right)$. Hint: Simplify using a log law before differentiating.

8. Complete the definition: The function g is the inverse of the function f if1)