Math 130 Day 21

Office Hours (LN 301/301.5): M 3:30-4:30, Tu 11:00-1:00, W 12:15-1:15, F 1:30-2:30. Other times by appointment. Math Intern: Sun through Thurs: 3:00-6:00, 7:00-10:00pm. Website: Use the links at the course homepage on Canvas or go to my course Webpage: http://math.hws.edu/~mitchell/Math130F16/index.html.

Practice

1. Read/Re-read Chapter 3.9 on Derivatives of Logs and Exponentials. Review the online notes. We will finish this next time. Also review Implicit Differentiation in Chapter 3.8.
2. Page $211 \# 3,9,11,15$ (simplify first with a \log rule), 17,19 (a classic).
a) Page $211 \# 23,25,27$
3. If we get this far: Find the derivatives of these three exponentials (answers below)
a) $x^{3} 5^{x}$
b) $4^{6 \cos x}$
c) $9^{e^{2 x}} \tan x$
d) Find the tangent line to the curve in (a) at the point $(2,1)$ Answers: Use $D_{x}\left(b^{u}\right)=b^{u} \frac{d u}{d x}$.
a) $D_{x}\left(x^{3} 5^{x}\right)=3 x^{2} 5^{x}+x^{3} 5^{x} \ln 5=x^{2} 5^{x}(3+x \ln 5)$
b) $D_{x}\left(4^{6 \cos x}\right)=-4^{6 \cos x} 6 \sin x \ln 4$
c) $D_{x}\left(9^{e^{2} x \tan x}\right)=9^{e^{2} x \tan x}\left(2 e^{2 x} \tan x+e^{2 x} \sec ^{2} x\right)$

Hand In Next Time

Do WeBWork Set Day 21. Due Thursday night. Remember Set Day 20 (Chain Rule Review) due Wednesday.

1. Use implicit differentiation to find $\frac{d y}{d x}$ and then etermine the tangent line to $y^{3}+\ln \left(y^{2}\right)=x^{3}+x+1$ at $(-1,1)$.
2. Compute and compare the derivatives of
a) $\frac{d}{d x}\left[\ln \left(x^{6}\right)\right]$
b) $\frac{d}{d x}\left[(\ln x)^{6}\right]$
3. Determine and simplify the derivative of $f(t)=\frac{3+\ln t}{e^{4 t}}$.
4. Find and simplify the derivative of $g(t)=8-7 \ln (\cos t)$ (where $t \in(-\pi / 2, \pi / 2)$ so that g is defined).
5. Find the derivative of $g(x)=\ln \left(x^{2}+9\right)^{1 / 2}$. Hint: Simplify using a log law before differentiating.
6. If $p(x)=7 x^{5} \ln (6 x)$, then $p^{\prime}(x)=$
7. Find the derivative of $g(x)=\ln \left(\frac{2 x^{3}+1}{x^{2}+3 x+1}\right)$. Hint: Simplify using a log law before differentiating.
8. Complete the definition: The function g is the inverse of the function f if
1)
2)
