Math 130: Lab 4

1. Carefully and quickly evaluate these polynomial and rational function limits at infinity by using highest powers. Note any Horizontal Asymptotes.

a)
$$\lim_{x \to +\infty} \frac{2x^2 + 1}{x^{2/3} + 4}$$

b)
$$\lim_{x \to -\infty} \frac{5x^2 - x}{10x^3 + 1}$$

$$\mathbf{c)} \lim_{x \to \infty} \frac{2 - 3x}{\sqrt{4x^2 + 1}}$$

d)
$$\lim_{x \to -\infty} \frac{2 - 3x}{\sqrt{4x^2 + 1}}$$

e) Determine the horizontal asymptotes of $f(x) = \frac{|x|}{2x+1}$. Show your work. Be sure to look in both directions.

2. a) In the figure below (left), for the given choice of ε , find and draw a δ interval about a=1 which satisfies the limit definition Note scale!

b) In the function on the right, f(1) = .2. However, show that $\lim_{x\to 1} f(x) \neq 0.2$ by finding an $\varepsilon > 0$ (draw the horizontal band) for which no corresponding δ can be found. Explain why your ε works.

1

- c) Is either of the functions above continuous at a = 1? Why?
- d) Does either have a removable discontinuity at a = 1? Why?
- **3.** Use the formal definition of limit to show that $\lim_{x\to 2} 4x 3 = 5$.

- 4. In one of the questions below, the Intermediate Value Theorem can be used to guarantee that the equation has a solution. In the other it cannot. Determine which is which and carefully explain why a solution must exist in one case but not the other.
 - a) Can the Intermediate Value Theorem be used to demonstrate that $f(x) = 2x + \cos x = 0$ at some point in the interval $[0,\pi]$? Carefully explain why or why not.
 - b) Can the Intermediate Value Theorem be used to guarantee that $f(x) = 6x^4 + 4x^3 2x^2 x = 3$ in the interval [-1,1]? Carefully explain why or why not.
- 5. Use the fact that the trig functions, log functions, and exponential functions are continuous on their domains to determine the following limits. For (a), use a trig id for $\sin^2 x$. Mathematical grammar: Use equal signs and the limit symbol as needed throughout the calculation.
 - $\cos x 1$ $\lim_{x \to 0}$ $\sin^2 x$
 - $\lim_{x \to \pi/2} \frac{\sin x 1}{\sqrt{\sin x} 1}$
 - \lim $x \rightarrow 0$
 - \lim
 - $\lim_{x \to 0^+} \frac{x+2}{e^x 1}$
- **6.** Which of these functions has a vertical asymptote as x = -1. Explain using the definition of VA.
 - a) $f(x) = \frac{x^2 + 1}{(x+1)^2}$
 - **b)** $h(x) = \frac{x^2 + x}{x + 1}$

- 7. a) Use the graph to determine the intervals of continuity the function.
- 8. a) Let $f(x) = \frac{\frac{1}{3} \frac{1}{2x+1}}{x-1}$. Determine where the function is continuous. Express your answer as the union of two or more intervals. (Why don't you need to check endpoints in this case?)
 - b) Determine where f has VAs and RDs. Use appropriate limits.
 - c) True or False: f is right continuous at 1.
- **9.** Let $f(x) = \begin{cases} \frac{x^2 + 3x + 2}{x + 1} & \text{if } x > -1, \\ 1 & \text{if } x = -1, . \\ \frac{x^2 + x + 2}{x + 1} & \text{otherwise.} \end{cases}$
 - a) Is f left continuous at -1? Justify your answer with limits.
 - **b)** Right Continuous? Justify.
 - c) Continuous? Justify.
 - d) Determine where the function is continuous. Express your answer as the union of two or more intervals.
 - e) Does f have a VA at -1? Justify your answer using the VA definition and limits.
 - f) Does f have an RD at -1? Justify your answer.
- 10. XC: Use the formal definition of limit to show that $\lim_{x\to 3} |18-6x| = 0$.

 Brief Answers. Complete answers online.

#1: $+\infty$, 0, $-\frac{3}{2}$, $\frac{3}{2}$, $\pm\frac{1}{2}$. #2: $0 < \delta \le 0.02$; $0 < \varepsilon < 0.1$. Neither is Cont, (a) has RD. #3: $\delta = \frac{\varepsilon}{4}$. #4: No, Yes. Lots of work needed! $\#5 - \frac{1}{2}$, 2, $-\infty$, $-\infty$, $+\infty$. #6: Yes, No. Check Limits!! #7: $[0,1) \cup [1,2) \cup (2,4) \cup (4,5) \cup [5,6]$. #8: $(-\infty, -\frac{1}{2}) \cup (-\frac{1}{2}, 1) \cup (1, \infty); \text{ VA: } x = -1/2, \text{ RD: } x = 1. \text{ #9: Only right continuous; } (-\infty, -1) \cup [-1, \infty). \text{ VA: } x = -1.$

2

Answers

- 1. Carefully and quickly evaluate these polynomial and rational function limits at infinity by using dominant powers.
 - a) $\lim_{x \to +\infty} \frac{2x^2 + 1}{x^{2/3} + 4} \stackrel{\text{HP}}{=} \lim_{x \to +\infty} \frac{2x^2}{x^{2/3}} = \lim_{x \to +\infty} \frac{2x^{4/3}}{1} = +\infty$

 - **b)** $\lim_{x \to -\infty} \frac{5x^2 x}{10x^3 + 1} \stackrel{\text{HP}}{=} \lim_{x \to -\infty} \frac{5x^2}{10x^3} = \lim_{x \to -\infty} \frac{1}{2x} = 0 \quad \text{HA} : y = 0$ **c)** $\lim_{x \to \infty} \frac{2 3x}{\sqrt{4x^2 + 1}} \stackrel{\text{HP}}{=} \lim_{x \to \infty} \frac{-3x}{\sqrt{4x^2}} = \lim_{x \to \infty} \frac{-3x}{|2x|} = \lim_{x \to \infty} \frac{-3x}{2x} = -\frac{3}{2} \quad \text{HA} : y = \frac{3}{2}$
 - d) $\lim_{x \to -\infty} \frac{2 3x}{\sqrt{4x^2 + 1}} \stackrel{\text{HP}}{=} \lim_{x \to -\infty} \frac{-3x}{\sqrt{4x^2}} = \lim_{x \to -\infty} \frac{-3x}{|2x|} = \lim_{x \to -\infty} \frac{-3x}{-2x} = \frac{3}{2}$ HA: $y = -\frac{3}{2}$
 - e) $\lim_{x \to \infty} \frac{|x|}{2x+1} \stackrel{\text{HP}}{=} \lim_{x \to \infty} \frac{|x|}{2x} \stackrel{\text{xpositive}}{=} \lim_{x \to \infty} \frac{x}{2x} = \frac{1}{2}$ $\lim_{x \to -\infty} \frac{|x|}{2x+1} \stackrel{\text{HP}}{=} \lim_{x \to -\infty} \frac{|x|}{2x} \stackrel{\text{xnegative}}{=} \lim_{x \to -\infty} \frac{-x}{2x} = -\frac{1}{2}$ $\text{HA}: y = \pm \frac{1}{2}$
- **2.** Note scale! (a) Any δ between 0 and .02 will work. (b) Choose ε with $0 < \varepsilon < 0.1$.

- a) Neither is continuous. (a) is not continuous because $\lim_{x\to 1} f(x) \neq f(1)$ and (b) is not continuous because $\lim_{x\to 1} f(x)$
- **b)** (a) has a removable discontinuity. $\lim_{x\to 1} f(x)$ exists but does not equal f(1).
- **3.** In this case a=2 and L=5.
 - Scrap: Given $\varepsilon > 0$, find δ . Work backwards:

Translate from the general to this particular function.

$$|f(x) - L| < \varepsilon \stackrel{\text{Translate}}{\Longleftrightarrow} |(4x - 3) - 5| < \varepsilon$$

Now simplify the absolute value.

$$\stackrel{\text{Simplify}}{\iff} |4x - 8| < \varepsilon$$

Factor out the constant in front of x.

$$\overset{\text{Factor}}{\Longleftrightarrow} 4|x-2|<\varepsilon$$

Solve for |x-a|.

$$\stackrel{\text{Solve}}{\iff} |x-2| < \frac{\varepsilon}{4}.$$

We now have $|x-a| < \delta$ where a = 2 and $\delta = \frac{\varepsilon}{4}$.

Choose
$$\delta = \frac{\varepsilon}{4}$$
.

At this last step we have an inequality of the form $|x-a|<\delta$. We identify δ as $\frac{\varepsilon}{3}$. Now we are ready to write the actual proof.

Proof: Let $\varepsilon > 0$ be given. Choose $\delta = \frac{\varepsilon}{4}$. If $0 < |x-2| < \delta = \frac{\varepsilon}{4}$, then

$$|f(x) - L| = |(4x - 3) - 5| \stackrel{\text{Simplify}}{=} |4x - 8|$$

$$\stackrel{\text{Factor}}{=} 4|x - 2|$$

3

Because we know $|x-2|<\frac{\varepsilon}{4}$, we can substitute and make an inequality

$$\stackrel{|x-2|<\frac{\varepsilon}{4}}{<} 4 \cdot \frac{\varepsilon}{4} = \varepsilon.$$

- 4. IVT: The Intermediate Value Theorem. Assume that
 - f is continuous on the closed interval [a, b] and
 - L is a number between f(a) and f(b).

Then there is at least one number c in (a, b) so that f(c) = L.

- a) Can the Intermediate Value Theorem be used to demonstrate that $f(x) = 2x + \cos x = 0$ at some point in the interval $[0,\pi]$? Carefully explain why or why not. **Solution.** Check the hypotheses of the IVT.
- Is f(x) continuous on the interval [0, 1]? Yes! Because $f(x) = 2x + \cos x$ is the sum of continuous functions (a polynomial 2x and a trig function $\cos x$), so it is continuous.
- Is L=0 between f(a)=f(0) and $f(b)=f(\pi)$? Well, $f(0)=0+\cos 0=1$ and $f(\pi)=2\pi+\cos(\pi)=2\pi-1=5.283$. So L = 0 is NOT between f(0) and $f(\pi)$.
- So we can NOT apply the IVT to say that there is some number c in $(0,\pi)$ so that f(c)=L=0. The IVT does not apply
- b) Can the Intermediate Value Theorem be used to guarantee that $f(x) = 6x^4 + 4x^3 2x^2 x = 3$ in the interval [-1,1]? Carefully explain why or why not. **Solution.** We need to check the two hypotheses of the IVT.
- Is f(x) continuous on the interval [-1,1]? Yes! Because f is a polynomial.
- Is L=3 between f(a)=f(-1) and f(b)=f(1)? Well f(a)=f(-1)=6-4-2+1=1 and f(1)=6+4-2-1=7. So, yes, L=3 is between f(-1)=1 and f(1)=7.
- So we can apply the IVT and say that there is some number c in (-1,1) so that f(c)=L=3.
- 5. a) $\lim_{x \to 0} \frac{\cos x 1}{\sin^2 x} \stackrel{\text{TrigID}}{=} \lim_{x \to 0} \frac{\cos x 1}{1 \cos^2 x} = \lim_{x \to 0} \frac{\cos x 1}{(1 \cos x)(1 + \cos x)} = \lim_{x \to 0} \frac{-1}{1 + \cos x} \stackrel{\text{TrigCont.}}{=} -\frac{1}{2}.$ b) $\lim_{x \to \pi/2} \frac{\sin x 1}{\sqrt{\sin x} 1} = \lim_{x \to \pi/2} \frac{\sin x 1}{\sqrt{\sin x} 1} \cdot \frac{\sqrt{\sin x} + 1}{\sqrt{\sin x} + 1} = \lim_{x \to \pi/2} \frac{(\sin x 1)(\sqrt{\sin x} + 1)}{\sin x 1} = \lim_{x \to \pi/2} \sqrt{\sin x} + 1 \stackrel{\text{TrigCont.}}{=} \stackrel{\text{Root}}{=} \frac{\sin x 1}{\sin x 1} = \lim_{x \to \pi/2} \frac{\sin x 1}{\sin x 1}$
 - c) $\lim_{x\to 0^-} \frac{\widehat{\cos x}}{x} = -\infty.$
 - d) $\lim_{x\to 1^-} \frac{x}{\ln x} = -\infty$. (ln x is a little less than 0 as $x\to 1^-$. Think about the graph of ln x.)
 - e) $\lim_{x\to 0^+} \frac{\overbrace{x+2^2}}{e^x-1} = +\infty$ (e^x is a little bigger than 1 as $x\to 0^+$. Think about the graph of e^x .)
- **6.** f has a VA at -1 if either $\lim_{x\to -1^+} f(x) = \pm \infty$ or $\lim_{x\to -1^-} f(x) = \pm \infty$. So Check the one-sided limits.
 - a) $\lim_{x \to -1^+} \frac{\overbrace{x^2 + 1}^2}{(x+1)^2} = +\infty$, so there is a VA at x = -1.
 - **b)** $\lim_{x \to -1^+} \underbrace{\frac{x^2 + x}{(x+1)}}_{x \to -1^+} = \lim_{x \to -1^+} \frac{x(x+1)}{x+1} = \lim_{x \to -1^+} x = -1$. Check the limit from the other side, too! $\lim_{x \to -1^-} \lim_{x \to -1^-} \frac{x(x+1)}{x+1} = \lim_{x \to -1^+} \frac{x(x+1)}{x$

x = -1. Neither limit is infinite, there is no VA at x = -1, even though the denominator is 0. (There is an RD.)

- 7. $[0,1) \cup [1,2) \cup (2,4) \cup (4,5) \cup [5,6]$
- **8.** Simplify: $f(x) = \frac{\frac{1}{3} \frac{1}{2x+1}}{x-1} = \frac{2x+1-3}{3(2x+1)(x-1)} = \frac{2x-2}{3(2x+1)(x-1)}$.
 - a) f is rational and is therefore continuous at all points in its domain: $x \neq 1, -\frac{1}{2}$. So the intervals of continuity are $(-\infty, -\frac{1}{2}) \cup (-\frac{1}{2}, 1) \cup (1, \infty)$. We don't have to check endpoints because f is not defined at either $x = 1, -\frac{1}{2}$ so it cannot be left or right continuous at either point.
 - b) VAs and RDs. Look at the limits at $x = 1, -\frac{1}{2}$. At x = 1:

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{2x - 2}{3(2x + 1)(x - 1)} = \lim_{x \to 1} \frac{2}{3(2x + 1)} \stackrel{\text{Rat'1}}{=} \frac{2}{9}$$

Since $\lim_{x\to 1} f(x)$ exists and f(1) is undefined, there is an RD at x=1. At x=-1/2:

$$\lim_{x \to -\frac{1}{2}^{-}} f(x) = \lim_{x \to -\frac{1}{2}^{-}} \frac{2x - 2}{3(2x + 1)(x - 1)} = \lim_{x \to -\frac{1}{2}^{-}} \frac{2}{3(2x + 1)} = -\infty$$

By definition, f has a VA at x = -1/2.

- c) False: If f is not right continuous at 1 because f(1) is not even defined.
- 9. Let $f(x) = \begin{cases} \frac{x^2 + 3x + 2}{x + 1} & \text{if } x > -1, \\ 1 & \text{if } x = -1, \\ \frac{x^2 + x + 2}{x + 1} & \text{otherwise.} \end{cases}$
 - a) Left continuous at -1? f(-1) = 1 and $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \underbrace{\frac{x^{2} + x + 2}{x + 1}}_{x \to 1^{-}} = -\infty$. So $\lim_{x \to 1^{-}} f(x) \neq f(-1)$. Therefore,

f is not left continuous at -1.

- **b)** Right Continuous: $\lim_{x \to 1^+} f(x) = \lim_{x \to -1^+} \frac{x^2 + 3x + 2}{x + 1} = \lim_{x \to -1^+} \frac{(x + 2)(x + 1)}{x + 1} = \lim_{x \to -1^+} x + 2 \stackrel{\text{Poly}}{=} 1$. So $\lim_{x \to 1^+} f(x) = f(-1)$. Therefore, f is right continuous at -1.
- c) Continuous? No. $\lim_{x\to 1^+} f(x) \neq \lim_{x\to 1^-} f(x)$ so $\lim_{x\to 1} f(x)$ DNE. Therefore f is not continuous at x=-1. OR f is not both left and right continuous at x=-1, so it cannot be continuous there.
- d) Since f is rational and defined when $x \neq -1$, it is continuous for all $x \neq -1$. We showed that it was right continuous at -1, but not left continuous. So the intervals are $(-\infty, -1) \cup [-1, \infty)$.
- e) f has a VA at -1 because $\lim_{x\to 1^-} f(x) = -\infty$.
- f) f does not have an RD at -1 because $\lim_{x\to 1} f(x)$ DNE.
- 10. In this case a=3 and L=0.
 - Scrap: Find δ . Assume that $\varepsilon > 0$ is given. Then

$$\begin{split} ||18-6x|-0| < \varepsilon & \stackrel{\text{Simplify}}{\Longleftrightarrow} |18-6x| < \varepsilon \\ & \stackrel{\text{Factor}}{\Longleftrightarrow} |-6||x-3| < \varepsilon & \stackrel{\text{Solve}}{\Longleftrightarrow} |x-3| < \frac{\varepsilon}{6}. \end{split}$$

So $\delta = \frac{\varepsilon}{6}$. Do the proof.

• Proof: Given $\varepsilon > 0$. Choose $\delta = \frac{\varepsilon}{6}$. If $0 < |x - 3| < \frac{\varepsilon}{6}$, then

$$||18 - 6x| - 0| = |18 - 6x| = 10|x + 3| = |-6||x - 3| < 6 \cdot \frac{\varepsilon}{6} = \varepsilon.$$

5