1. a) (8 pts) Let $f(x)=\sqrt{x^{4}-2 x^{2}+3}$ on $[-2,3]$. WeBWorK Day $28 \# 8$. Find the absolute max and min of f and the points at which these occur. (You may assume the term in the square root is always positive.) Carefully simplify f^{\prime}. Show your work.

The absolute max value is \qquad occurring at $x=$ \qquad . The absolute min value is \qquad occurring at $x=$ \qquad .
b) What theorem did you use? \qquad
2. (6 pts) From the next exam: Complete the statement of the Mean Value Theorem then draw and label diagram which illustrates it on the axes provided. Assume that f is a \qquad function on the interval _a, b_ and a \qquad function on the \qquad interval __ $a, b_{_}$. Then there is a point c in (a, b) so that (fill in below)
\qquad $=$ \qquad
a) (2 pts) Complete the definition. If f is defined at $x=c$, then c is a critical point of f if:
3. Optional Bonus: Re-use some of the information in Problem 1 to determine the intervals where $f(x)=\sqrt{x^{4}-2 x^{2}+3}$ is increasing and where it is decreasing. Use a number line to summarize your results.

