Basic Derivative Properties

Let's start this section by reminding ourselves that the derivative is the slope of a function. What is the slope of a constant function?

FACT 12.1. Let $f(x)=c$, where c is a constant. Then $f^{\prime}(x)=0$.

Proof. If $f(x)=c$, then

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{c-c}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0
$$

Geometrically this result is obvious. The graph of the constant function $f(x)=c$ is a horizontal line with height c. The geometrically the derivative of f is slope of the graph of the function. Because the graph is a horizontal line, the slope of the function is 0 at each point, exactly as we found with the limit process.

Differentiability and Continuity

If we think of continuous function as meaning the the graph is 'unbroken'-there are no gaps or holes, then a differentiable function is one that it s 'smooth'—it has no corners, let alone gaps or holes. Intuitively then, it would seem that a differentiable function must be continuous. This is, indeed, the case.

THEOREM 12.0.1. [Differentiable implies Continuous] If f is differentiable at $x=a$, then f is continuous at $x=a$.

Proof. Because f is differentiable at $x=a$, we know two things. First, by definition of the derivative,

$$
\begin{equation*}
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad \text { exists. } \tag{12.1}
\end{equation*}
$$

Second, whenever $x \neq a$, then

$$
f(x)-f(a)=\frac{f(x)-f(a)}{x-a} \cdot(x-a)
$$

or, whenever $x \neq a$, then

$$
\begin{equation*}
f(x)=\frac{f(x)-f(a)}{x-a} \cdot(x-a)+f(a) \tag{12.2}
\end{equation*}
$$

Now take the limit in equation (12.2) using the definition of the derivative in equation (12.1):

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a} \cdot(x-a)+f(a)\right) \\
& =f^{\prime}(a) \cdot 0+f(a) \\
& =f(a) .
\end{aligned}
$$

Since $\lim _{x \rightarrow a} f(x)=f(a)$, by definition f is continuous at $x=a$.
Sometimes saying the same thing in a different way can be more helpful. Notice that by the theorem above we can say: If f is not continuous, then f cannot be differentiable, because if it were differentiable Theorem 12.0.1 would say that f had to be continuous. In other words,

THEOREM 12.0.2. [Not Continuous implies Not Differentiable] If f is not continuous at $x=$ a, then f is not differentiable at $x=a$.

A word of caution-Other ways to fail to be differentiable. Be careful. Neither version of the theorem tells us what happens if we start with a continuous function. In particular, if f is continuous at $x=a$, we cannot say whether f is differentiable.

EXAMPLE 12.0.3 (Example of a continuous function that is not differentiable.). Show that $f(x)=|x|$ is continuous at $x=0$ but is not differentiable there.

SOLUTION. First we need to show that $|x|$ is continuous at 0 . This means showing that $\lim _{x \rightarrow 0}|x|=|0|$. This is obvious from the graph (see Figure 12.2), but let's check it

Because $|x|$ is a piecewise function, we need to check the left and right limits as x approaches 0. From the left

$$
\lim _{x \rightarrow 0^{-}}|x|^{x} \leqq 0 \lim _{x \rightarrow 0^{-}}-x \stackrel{\text { linear }}{=} 0 .
$$

From the right,

$$
\lim _{x \rightarrow 0^{+}}|x|^{x} \geqq 0 \lim _{x \rightarrow 0^{+}} x \stackrel{\text { linear }}{=} 0 .
$$

Since the left and right limits both are 0 , it follows that $\lim _{x \rightarrow 0}|x|=0$. Since $f(0)=|0|=$ 0 , we see that $f(x)$ is continuous at $x=0$.

To show that f is not differentiable at 0 , we use the definition of the derivative of f at a point,

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}
$$

Again, because of the piecewise nature of the $|x|$, we must check the one-sided limits. So From the left

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{|x|-|0|}{x-0} \stackrel{x}{ } \leqq 0 \lim _{x \rightarrow 0^{-}} \frac{-x}{x}=-1 .
$$

From the right,

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{|x|-|0|}{x-0} \stackrel{x}{x} \geqq \lim _{x \rightarrow 0^{+}} \frac{x}{x}=1 .
$$

Since the left and right limits are different, it follows that $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$ does not exist. In other words, the function is not differentiable at $x=0$.

Here are four examples of functions that are continuous at $x=a$ but which are not differentiable.
(a)

(c)

Figure 12.3: (a) The graph is continuous (unbroken) but has a corner, so there are two different slopes at $x=a$ depending on whether we approach a from the left or the right. So f is not differentiable at a, that is, $f^{\prime}(a)$ does not exist.
(b) The graph is continuous (unbroken) but has a a vertical tangent at $x=a$ (infinite slope). So f is not differentiable at a, that is, $f^{\prime}(a)$ does not exist.
(c) The graph is continuous (unbroken) but has a a cusp at $x=a$. So f is not differentiable at a, that is, $f^{\prime}(a)$ does not exist.
(d) The graph is continuous (unbroken) but has a corner at $x=a$. So there are two different slopes at $x=a$ depending on whether we approach a from the left or the right. So f is not differentiable at a, that is, $f^{\prime}(a)$ does not exist.

