Limits at Infinity

Horizontal Asymptotes

Consider the function f(x) = xf—il which is graphed below. It does not have any

vertical asymptotes but it does have a horizontal asymptote at y = 1.

So what do we mean when we say that f has a horizontal asymptote at y = 1?
Something like

“As x gets big, or as x — oo, f(x) gets close toy = 1"
“As x — —oo, f(x) gets close toy = 1"

We can see this by looking at a table of values:

X +10 | £100 | =£1,000

2

xzxiﬂ 1.001 | 1.0001 | 1.000001

The following informal definition will be sufficient for our purposes.

DEFINITION 7.0.1 (Limits at Infinity). We say that

lim f(x)=L

X——o0

if we can make f(x) arbitrarily close to L by taking x sufficiently large. Similarly,

im f(x)=M

X—>—00

if we can make f(x) arbitrarily close to M by taking x sufficiently large in magnitude but
negative.

DEFINITION 7.0.2. The line y = L is a horizontal asymptote (HA) for the graph of f(x) if
either lir_{_\ f(x)=Lor lim f(x)=L.
X—r+00 X—r—00

Pictures

Here are a few graphs of functions with horizontal asymptotes. Notice that the
function can cross a horizontal asymptote (but not a vertical one). Notice that if
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y = L is a horizontal asymptote, then it means when x is large enough (in one

direction or the either) the function stays within a little horizontal corridor about
the line y = L...i.e., f(x) gets close to L.

lim,_,_o = arctanx = —71/2 and lim,_,, = arctanx = 71/2

limy e f(x) =1soy =1is an HA for y = f(x)

y = £7m/2 are HA’s for y = arctan x

Working with Limits at Infinity

Here’s a simple function f(x) = % As x gets large in magnitude it is easy to see
that f(x) approaches 0.

x | £10 | £100 | £1,000 | +1,000,000

1] 401 | £0.01 | £0.001 | +0.000001

In other words we have the following

FACT 7.1. Let f(x) = 1, then

lim 1 =0and lim 1 =0.
X—00 X xX——00 X

This means that y = 0 is an HA for f(x) = 1.
Most of the basic limit laws carry over for limits at infinity. So we can use them
to show: if r > 0 (even fractional values of r are fine), then

,
. C Const Mult . 1mp .1
lim — =" lim — = ¢ lim = ] =¢(0)" =0.
x—o0 x7 x—o0 x7 x—00 X

FACT 7.2. If r > 0, then

Likewise, as long as x” is defined when x < 0, then
c This makes sense, just think about it: If
im — = 0. x gets large, then x” gets large (if r > 0)
E=r=03 3 so % gets small.

7x% 41
EXAMPLE 7.0.3. D i li —.
7.0.3 etermine xgrc}o 622 — 3x

Solution. If we divide both the numerator and denominator by the highest
power of x in the denominator, things quickly simplify.

lim 7x2+2 +i‘2 lim 7+x% Fact 7.2 6+076
so0bx2 —3x  xmw6—3  7—0 7
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7.1 Infinite Limits at Infinity

Many simple and familiar functions get very large in magnitude as x itself gets
large in magnitude We say that such functions have an infinite limit at infinity. A
couple of familiar examples include g(x) = |x| and f(x) = x2 illustrated below.

8(x) = || fl) =2

DEFINITION 7.1.1 (Infinite Limits at Infinity). If f(x) becomes arbitrarily large as x becomes ar-
bitrarily large, then we write

Jim f(x) = .

If f(x) becomes arbitrarily large in magnitude but negative as x becomes arbitrarily large,
then we write

i jied) = =ea
Similar definitions are used for lim f(x) =occand lim f(x)= —o0.
X——00 X——00

The End Behavior of Polynomials

Infinite limits at infinity describe the behavior of all polynomials of degree greater
than 0. The simplest examples are provided by functions of the form f(x) = x"
where 7 is a positive integer. Since positive powers of large numbers are large, this
means that for all 7,

lim x" = 4o0.
X—00

Limits at —oo are only slightly more complicated. Since we are now looking at
powers of large magnitude negative numbers, the product will be either positive or
negative depending on whether 7 is an even or odd power. In other words,

00, if n is even

lim x" =
x——00 —oo, if nisodd

This is illustrated below.

¥i
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Let’s show that when we have any polynomial, its behavior as x — =oo is
completely determined by its highest power. That is if p(x) is a degree n polyno-
mial p(x) = apyx" +a, X" 1+ -+ a;x + ag, then xlgr;o p(x) = JClgrolo a,x" and

lim p(x) = EIPOO a,x". We can see this by factoring out x" from p(x)

X—>—00 X

lim p(x) = lim a,x" +a,_1x" '+ -+ a1x 4 ag

X—r 00 X—> 00
T e T € e et o B
X—r00 xn

. an—1 aj ao
= lim x" | a, + +ot ==+ o
X—»00 X X X
~—— —~—
—0 —0 —0
= lim a"x".
X— 00

It is worth gathering all of these observations together in a theorem, though
they should seem quite intuitive or natural.

THEOREM 7.1.2 (Limits of Powers and Polynomials). Let n be a positive integer. Then

(1) If n is even, then xlim x" = 400 and Em x" = H4o0.
X —0o0

— 0
(2) If nis odd, then lim x" = 400 and lim x" = —oo.
X—r00 X——00
. . g g _ . n
(3) (Highest Power) If p(x) is a degree n polynomial, then lim p(x) = lim a,x and

lim p(x) = lim a,x", where a,x" is the highest degree term.
X—>—00 X—>—00

Note: A polynomial does not have any horizontal asymptotes.

EXAMPLE 7.1.3 (Polynomial Limits at Infinity). A couple of simple examples illustrate the ideas
in the theorem. Let p(x) = 9x* — 2x + 1 and g(x) = —4x° + 7x* + 3. Then
Highest Powers

lim p(x) = xli_I}rf}o9x4 —2x+1

lim 9x* = +
X—00 %)

X—

because the degree is 4 (even) and the leading coefficient is 9 (positive). Similarly We use “HP” to indicate that we are us-
ing the highest degree term to evaluate

lim p(x) HP i ot — 2y +1 lim 9% = 400 the limit of the polynomial.
x5 —00 x5 00 x——c0

because the degree is still even and the leading coefficient is 9 (positive). Now

lim g(x) T lim —425 + 722 +3 = lim —42° = —o0
X—r00 X—00 X—r00

because the degree is 3 (odd) and the leading coefficient is —3 (negative). Similarly

lim g(x) % lim —4x> 472243 = lim —4x° = +oo
X——o0 x——co x——co
because the degree is 3 (odd) and the leading coefficient is —3 (negative) and the limit is
approaching negative infinity.
These are relatively easy. . .just think about the sign of the highest degree term as x —
+o0o or x — —oo.

7.2 HA’s and Rational Functions

The key to finding horizontal asymptotes for rational functions is to divide the
numerator and denominator by x to the degree (highest power of x) of the denominator.

EXAMPLE 7.2.1. Determine the HA's of f(x) = %.
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Solution. We need to determine the limits as x — o0. Dividing by x* (the
degree of the denominator is 4)

4yt —2x3 47 . + 4—0+0_4

e M LA -y
xv00 30k + 222 + 1 xir&o“ +1 T 34040 3

Soy = 1s an HA. What about as x — —o0?

lim dxt —2x347 fim 4-24+ 75 4
pourem. oo3x4+2x2+1 xo— oo3+ _4_* 3

EXAMPLE 7.2.2. Determine lim,_, 9x3’+21x

Solution. Dividing by x* (the degree of the denominator is 3)

2 _ 3_2 _
lim o5 =2 i 2 "Z—uzo.
x50 9x3 41 x—— oo9+ 9+0

So y = 01is an HA.

x3-2

EXAMPLE 7.2.3. Determine limy_; _« 2*(2 Tx

Solution. Dividing by x? (the degree of the denominator is 2)

ad-2 . -5 4
o —=lim ——== lim — =-o
x——o00 2Xx% 4+ x x——c0 4 3 x——o0 2

There is no HA.

EXAMPLE 7.2.4. Determine limy_;c0 %

Solution. Dividing by x (the degree of the denominator is 1)

lim 212 = lim £ 0
x~>002x—|—1_x~)002_|_l 2+0

There is an HA at y = 0.

Dominant Powers

Here are a couple of quick observations we can make about a rational function
% from these examples. The limits depend on the highest degree terms in both
the numerator and denominator. So we can focus on just those terms. Return to
Example 7.2.2. Ignoring the lower degree terms in the numerator and denominator
we get
3x% — 2x nghest Powers 2 . 3
lim m *
xr—c0 9x3 £ 1 x5-09x3 x50 9 9
as before.

EXAMPLE 7.2.5. Here are a few more examples. Indicate this process by using HP over the
equals sign when you employ it.
3x2—2x+1wmp .. 3x2 2 0
————— = lim — =1 5 == 0.

= m
x——c0  2x4 4+ 6x x> o0 2x4 X——00 2

Similarly

she 5 x| xoebxd 5
This method works with fractional powers

23 42x2 +1mp ., 2x¢° 2
—_— = 11n1 =

lim 72363/2 +x—1up lim 2272 = lim 22172 = 400
X—+00 5x+7 T x50 Bx x5 5 ’
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More examples with Square Roots

Remember that

X if x>0
VaZ = x| = -

—x ifx<0
Using highest powers
VxZ+7x+1np . Va2 . xfxso0 . ox 1
m ——— = lim — = lim — "= lim — ==
x—00 2x 42 x—+oo 2x x——+o0 2x x—+00 2x 2

Now compare what happens with

lim 7x2—|—7x+1@ lim —xZ— lim sto lim > = L
ot 2x+2 | xotee 2x s 2x | aoie 2x 2

This is why it is important to calculate the limits for both x — +oc0 and x — —co.
So there are two HA’s for this function: y = j:%.

EXAMPLE 7.2.6. Determine the HA's for

V16x2 + 5x
3x+1

flx) =

~—

Solution.  Using highest powers

V16x?2 +5x mp .. V1ex2 . |4x| x>0 .. 4x 4
_ 1 = lim — "= lim

m = m — = .
x—+oo  3x+1 x—+o00  3x x—+o0 3x x—+00 3x 3

Now compare what happens with

. V16x? +5x mwp . 16x2 . |4x| x<o0 . —4x 4
Iim —— = lim = lim — "= lim — = —=
X——00 3x+1 x——oc0  3x x——o0 3X x——00 33X 3
because in this case x < 0 so |[4x| = —4x. So y = +3 are both HA’s.
3/ 2 2
EXAMPLE 7.2.7. Determine lim u This time
x——00 x+1
Va2 wmp . Va2 X3 . 1
_— = hm—: hm—: im — =0
x——00 x+1 x——00 X Xx——00 X x——o0 x1/3

Your text states the following theorem which we include for completeness.
But rather than memorize this this theorem, just employ the dominant or highest
powers technique.

THEOREM 7.2.8 (Limits at Infinity for Rational Functions). Let p(x) and g(x) be polynomials.
p(x)

(1) If the degree of the numerator is less than the degree of the denominator, then 1_i>m =L =
X

o0 4(x)
0 and x = 0 is a HA.

(2) If the degree of the numerator is the same as the degree of the denominator, then 1_1&1 % =
X (o)
% where a and b are the leading coefficients of p and g and x = § is a HA.
p(x)

(3) If the degree of the numerator is larger than the degree of the denominator, then lim ——= =
x—koo g(x)

oo or —oo depending on the highest powers and their coefficients in the polynomials
p(x) and g(x). There is no HA.
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EXAMPLE 7.2.9. Now we will use these observations to evaluate the following rational func-

tions
3t—-1

m =
tS+oo 13 —1

because the degree of the numerator is 1 and the denominator is 3. Next

263 +x2+1 2 1

lim —————— =~ =
x—+oo  4x3 —2 4 2
because the degrees of the numerator and denominator are equal.

i 5x5 — x . 5x3 . 3
Iim ——— = lim — = lim 2x° = —oo0.
x50 1062+ 1 x50 1042 x5-c0

Here the degree of the numerator is larger than the degree of the denominator.

The End Behavior of the Natural Log and Exponential Functions

Earlier we examined the graphs of y = ¢* and y = e™*. Using these graphs and the
the graph of ¥ = In x we make some final observations.

THEOREM 7.2.10 (The End Behavior of the Natural Log and Exponential Functions). The end be-
havior of e* and e™* on 9 — c0, c0) and Inx on (0, +o0) is given by

lim e* = 400 and lim ¢* =0
X—00 X—r—00
lime * =0 and lim e = +o0
xX—00 xX——00
Iim Inx = —o0 and Iim Inx = +oc0
x—0* X—00
lim ¢ =0and lim ¢* = +o0 lime *=0and lim e * = +co
xX——00 X—r00 X—00 X——00

Soy =0is HA for y = e* y=0is HAfory =e™*

LIMITS AT INFINITY, HORIZONTAL ASYMPTOTES

lim Inx = +o0 and lim = —o0
X—00 x—0t

x=0is VAfory =Inx

_—

Other Limits at Infinity

Using the basic limit laws and the few limit facts we have established, we can
determine other limits at infinity. For example, since limy_, 6™ = 0, then

. . 4, 4
Jm g = limze " =30 =0
Or using the sum rule for limits,
x> +1 10 . x2+1 10 1 1
Ii —— =1 —lim===—-0= =
x—oo 3x2 X X—00 x2 x—o00 X
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