
Implicit Differentiation

Implicit Differentiation—Using the Chain Rule

In the previous section we focused on the derivatives of composites and saw that

THEOREM 20.1.1 (Chain Rule). Suppose that u = g(x) is differentiable at x and y = f (x)
is differentiable at u = g(x). Then the composite f (g(x)) is differentiable at x and

dy
dx

=
dy
du
· du

dx
.

This can be written as
d

dx
[ f (g(x))] = f ′(g(x))g′(x).

Notice that we can apply the chain rule even if we do not know the precise formula
for the inner function.

EXAMPLE 20.1.2. Write out the chain rule derivative for each these, assuming u and v are
functions of x.

(a)
d

dx
(6 sin(u)) = 6 cos u

du
dx

. Note the since u is some unknown function of x, we must

include the chain rule derivative (’inside derivative’), du/dx.

(b)
d

dx
[eu] = eu du

dx
(c)

d
dx

[sin u] = cos u
du
dx

(d)
d

dx
[tan u] = sec2 u

du
dx

(e)
d

dx
[sec u] = sec u tan u

du
dx

(f )
d

dx
[un] = nun−1 du

dx

(g)
d

dx

(
u3 cos(v)

)
= 3u2 · du

dx
· cos(v) + u3(− sin(v))

dv
dx

= 3u2 cos(v)
du
dx
− u3 sin(v)

dv
dx

.

Notice that the symbol (letter) we use for the inner function does not matter. For
example, if we use y for the inside function instead of u, we have y = g(x), then

d
dx

[

y3︷ ︸︸ ︷
(g(x))3] = 3y2 dy

dx
= 3(g(x))2g′(x) . . . or

d
dx

(y3) = 3y2 dy
dx

.

Similarly

d
dx

[

y5︷ ︸︸ ︷
(g(x))5] = 5u4 dy

dx
= 5(g(x))4g′(x) . . . or

d
dx

(y5) = 5y4 dy
dx

.

More generally, you text states

THEOREM 20.1.3 (General Power
Rule). If f (x) is a differentiable
function, then

d
dx

[( f (x))n] = n( f (x))n−1 f ′(x).

Now what we need to pay attention to is the variables used in the function and
the variable that the derivative is taken with respect to. Notice that

d
dx

(u9) = 9u8 du
dx

.
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Similarly
d

dx
(y9) = 9y8 dy

dx
and

d
dt
(x9) = 9x8 dx

dt
.

However
d

dx
(x9) = 9x8,

because the variables are the same and there is no chain rule ’inside derivative.’

EXAMPLE 20.1.4. Here are several other examples:

(1)
d

dx
(tan u) = sec2 u

du
dx

(2)
d

dx
(tan y) = sec2 y

dy
dx

(3)
d

dx
(tan x) = sec2 x (4)

d
dt
(a2) = 2a

da
dt

5. If c2 = a2 + b2, then
d
dt
(c2) =

d
dt
(a2 + b2) so 2c

dc
dt

= 2a
da
dt

+ 2b
db
dt

.

6. If that A = πr2, then
d
dt
(A) =

d
dt
(πr2) so

dA
dt

= 2πr
dr
dt

. Here we are assuming that
the radius of the circle is changing with respect to time. In other words, we assume that r
is some (unknown) function of t.

EXAMPLE 20.1.5. Fancier examples: This time assume u, v, and y are functions of x.

1. Using the product rule,
d

dx
(u2v3) = 2u

du
dx

v3 + u23v2 dv
dx

.

2. And
d

dx
(x2y3) = 2xy3 + x23y2 dy

dx
.

Implicit and Explicit Functions

Sometimes we have an explicit formula for a function. For example, y = f (x) = ex

or y = f (x) = x2 + 3x + 1 defines y explicitly as a function of x. For each value of
x that we put into either function, we obtain a single output value.
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Figure 20.1: The graph of the relation
xy2 = 1 is not the graph of a function. It
does not pass the vertical line test.

Compare this to the equation xy2 = 1. Here the relation between x and y is
defined implicitly. Rather than a function we have an equation involving both x
and y. In this case we could solve for y and obtain

y2 =
1
x

which implies y =
1√
x

or y = − 1√
x

.

The result is not a function.
We will take as our definition that an implicit function is an equation involving

two or more variables.

EXAMPLE 20.1.6. Consider the implicit function given by x2 + y2 = 1. We know that its
graph is a circle and is not an ordinary function since its graph does not pass the vertical
line test.
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Figure 20.2: The graph of the relation
x2 + y2 = 1 is not the graph of a
function. It does not pass the vertical
line test.

In this case, we could create two ordinary (explicit) functions from this single implicit
function. Solving for y we find that y2 = 1− x2 so that y =

√
1− x2 or y = −

√
1− x2.

EXAMPLE 20.1.7. Here’s another implicitly defined function: x3 + yx2 + y3 = 7. This time
there is no simple way to make one of more explicit functions from this relation.

The Goal

Given an implicit function in variables x and y, find the derivative
dy
dx

without ever
solving for y explicitly. This is called implicit differentiation. The next example
illustrates how to do this.



3

EXAMPLE 20.1.8. Determine
dy
dx

if x2 + y2 = 1. Then calculate the slope of the curve at the

points ( 1
2 ,
√

3
2 ), (0, 1), an (1, 0).

SOLUTION. Note first that since we want to determine dy
dx , we are treating x as the

independent variable. So we are taking the derivative with respect to x. Thus,

d
dx

(x2 + y2) =
d

dx
(1)

so
d

dx
(x2) +

d
dx

(y2) = 0.

Using the chain rule

2x + 2y
dy
dx

= 0.

Now solve for dy
dx

2y
dy
dx

= −2x

so
dy
dx

= − x
y

, (y 6= 0).

Now we can determine slopes at specific points on the circle. The slope at ( 1
2 ,
√

3
2 )

—check that this point is on the circle— is given by substituting in the particular
x and y values of the point into the expression for dy

dx . Notice the notation used to
indicate the point at which the derivative is calculated.

dy
dx

∣∣∣∣
( 1

2 ,
√

3
2 )

= − x
y

∣∣∣∣
( 1

2 ,
√

3
2 )

= −
1
2√
3

2

= − 1√
3
= −
√

3
3

.
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Figure 20.3: The tangents at ( 1
2 ,
√

3
2 ) and

(0, 1).

At (0, 1)
dy
dx

∣∣∣∣
(0,1)

= − x
y

∣∣∣∣
(0,1)

= −0
1
= 0.

Looking at the graph of the circle, these two slopes look to be correct. Finally, the

slope at (1, 0) is not defined since
dy
dx

= − x
y

, (y 6= 0). The tangent line is vertical.

EXAMPLE 20.1.9 (Like an exam question). Let x2 + 2xy = y3 + 13.

1. Find
dy
dx

2. Verify that (3, 2) is on the curve.

3. Determine the equation of the tangent line at (3, 2).

The graph of x2 + 2xy = y3 + 13.

SOLUTION. (1) Take the derivative (with respect to x) of both sides of the equation.

d
dx

(x2 + 2xy) =
d

dx
(y3 + 13)

Using the product and chain rules

2x + 2y + 2x
dy
dx

= 0 + 3y2 dy
dx

Gather all the dy
dx terms on the left side

2x
dy
dx
− 3y2 dy

dx
= −2x− 2y

(2x− 3y2)
dy
dx

= −2x− 2y

Solve for dy
dx

dy
dx

=
−2x− 2y
2x− 3y2
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2. Check that (3, 2) is on the curve:

x2 + 2xy = 32 + 2(3)(2) = 21 and 13 + y3 = 13 + 23 = 21.

Thus (3, 2) is on the curve.

3. Determine the tangent at (3, 2). The slope is

m =
dy
dx

∣∣∣∣
(3,2)

=
−2x− 2y
2x− 3y2

∣∣∣∣
(3,2)

=
−2(3)− 2(2)
2(3)− 3(22)

=
−10
−6

=
5
3

.

So the equation is

y− 2 = 5
3 (x− 3) or y = 5

3 x− 5 + 2 or y = 5
3 x− 3.

EXAMPLE 20.1.10 (Like an exam question). Let x2 + x2y2 = y3 − 3.

1. Verify that (1, 2) is on the curve.

2. Determine the equation of the tangent line at (1, 2).

SOLUTION.1. Check that (1, 2) is on the curve. At (1, 2)

x2 + x2y2 = 12 + 1222 = 5 and y3 − 3 = 23 − 3 = 5.

Thus (1, 2) is on the curve.

2. To find the tangent at (1, 2) we need the slope; we already have the point. We need
to find dy

dx . Take the derivative (with respect to x) of both sides of the equation.

d
dx

(x2 + x2y2) =
d

dx
(y3 + 13)

2x + 2xy2 + 2x2y
dy
dx

= 3y2 dy
dx

Gather all the dy
dx terms on the left side

(2x2y− 3y2)
dy
dx

= −2x− 2xy2

Solve for dy
dx

dy
dx

=
−2x− 2xy2

2x2y− 3y2

Evaluate dy
dx at (1, 2) to get the slope

m =
dy
dx

∣∣∣∣
(1,2)

=
−2x− 2xy2

2x2y− 3y2

∣∣∣∣
(1,2)

=
−2(1)− 2(1)(22)

2(12)(2)− 3(22)
=
−10
−8

=
5
4

.

So the equation is

y− 2 = 5
4 (x− 1) or y = 5

4 x− 5
4 + 2 or y = 5

4 x + 3
4 .

EXAMPLE 20.1.11 (Easier). Let x + y2 − 4y = 2.

1. Determine the equations of all the tangents when x = 2.

2. At what points are the tangents vertical.

SOLUTION. 1. First we must determine the y-coordinates of the points on the curve
that have x = 2 as the first coordinate. Since x + y2 − 4y = 2, when x = 2

2 + y2 − 4y = 2 so y2 − 4y = y(y− 4) = 0 or y = 0, 4.

So the points are (2, 0) and (2, 4).
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2. To find the tangents we need the slope so we need to find dy
dx . Take the derivative

(with respect to x) of both sides of the equation.

d
dx

(x + y2 − 4y) =
d

dx
(2)

1 + 2y
dy
dx
− 4

dy
dx

= 0

(2y− 4)
dy
dx

= −1

Solve for dy
dx

dy
dx

=
−1

2y− 4
(y 6= 2)
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(6, 2)

Figure 20.4: The graph of the
relationx + y2 − 4y = 2.

At (2, 0): Evaluate
dy
dx

at (2, 0) to get the slope at the first point

m =
dy
dx

∣∣∣∣
(2,0)

=
−1

2y− 4

∣∣∣∣
(2,0)

=
−1

2(0)− 4
=

1
4

.

So the equation is

y− 0 = 1
4 (x− 2) or y = 1

4 x− 1
2 .

See Figure 20.4. At (2, 4):

m =
dy
dx

∣∣∣∣
(2,4)

=
−1

2y− 4

∣∣∣∣
(2,4)

=
−1

2(4)− 4
= −1

4
.

So the equation is

y− 4 = − 1
4 (x− 2) or y = − 1

4 x− 9
2 .

See Figure 20.4.

3. The graph will have a vertical tangent where the slope
dy
dx

=
−1

2y− 4
becomes

infinite. This is where the denominator goes to 0. This is at y = 2. When y = 2,

x + y2 − 4y = 2 so x + 22 − 4(2) = 2 so x = 2− 4 + 8 = 6.

Thus, there is a vertical tangent at (6, 2). See Figure 20.4.

EXAMPLE 20.1.12. Find dy
dx if cos y + sin x = x2.

SOLUTION. Take the derivative with respect to x and solve for dy
dx .

d
dx

(cos y + sin x) =
d

dx
(x2)

− sin y
dy
dx

+ cos x = 2x

− sin y
dy
dx

= 2x− cos x

dy
dx

= −2x− cos x
sin y

=
cos x− 2x

sin y
.

EXAMPLE 20.1.13. Find dy
dx if exy = x.

SOLUTION. Take the derivative with respect to x of both sides of the equation and
solve for dy

dx .

d
dx

(exy) =
d

dx
(x)

exy
(

y + x
dy
dx

)
= 1

exyy + exyx
dy
dx

= 1

exyx
dy
dx

= 1− exyy

dy
dx

=
1− exyy

exyx
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EXAMPLE 20.1.14. Find dy
dx if tan(xy) = x2 + y.

SOLUTION. Take the derivative with respect to x of both sides of the equation and
solve for dy

dx .

d
dx

(tan(x3y3)) =
d

dx
(x2 + y)

sec2(xy)
(

3x2y3 + 3x3y2 dy
dx

)
= 2x +

dy
dx

3x2y3 sec2(xy) + 3x3y2 sec2(xy)
dy
dx

= 2x +
dy
dx

3x3y2 sec2(xy)
dy
dx
− dy

dx
= 2x− 3x2y3 sec2(xy)

(3x3y2 sec2(xy)− 1)
dy
dx

= 2x− 3x2y3 sec2(xy)

dy
dx

=
2x− 3x2y3 sec2(xy)
3x3y2 sec2(xy)− 1

YOU TRY IT 20.1. Determine dy
dx given ex+2y = x.

answertoyoutryit20.1.
dy
dx

=
1

2ex+2y−
1
2

.

YOU TRY IT 20.2. Determine dy
dx given ey + 9y = 4x5 + 1.

answertoyoutryit20.2.
dy
dx

=
20x4

ey+9
.

YOU TRY IT 20.3. Determine the equation of the tangent line to dy
dx given ey + 9y = 4x5 + 1 at

(1, 2).
answertoyoutryit??.

dy
dx

=−y3−2xy
3xy2+x2.Tangent:y−2=−5

13(x−1).


