Implicit Differentiation

Implicit Differentiation—Using the Chain Rule
In the previous section we focused on the derivatives of composites and saw that

THEOREM 20.1.1 (Chain Rule). Suppose that u = g(x) is differentiable at x and y = f(x)
is differentiable at # = g¢(x). Then the composite f(g(x)) is differentiable at x and

dy _dy du

dx  du dx’
This can be written as

L (£(g()]) = £/(g(x))g/(3).

Notice that we can apply the chain rule even if we do not know the precise formula
for the inner function.

EXAMPLE 20.1.2. Write out the chain rule derivative for each these, assuming u and v are
functions of x.

d . du . . .
(@) —(6sin(u)) = 6cosu——. Note the since u is some unknown function of x, we must
include the chain rule derivative (‘inside derivative’), du/dx.

du d du d du
U] — U2 e — “on “ — 2“9
(b) I [“]=e Ir (©) I [sin u] cos U (d) I [tanu] = sec o
a4 - du LA p— L
() I [secu] = secutanudx ) I [u"] = nu I
) 4 <u3 cos(v)) =3u®. du -cos(v) + u*(—sin(v)) do =3u? cos(v)d—u — u3sin(v) —.
dx dx dx dx dx

Notice that the symbol (letter) we use for the inner function does not matter. For
example, if we use y for the inside function instead of u, we have y = g(x), then

}/3

d 3 a2 _ 2, d 3y _ 5024y
Te8()°T =3y =7 =3(8(x))7g (x) .. or —(y”) = 3y"
Similarly More generally, you text states
5 THEOREM 20.1.3 (General Power
d /_%R J d d Rule). If f(x) is a differentiable
1)) = 5ut L = 5(3(x))*g/(x)... or () = 5y* Y. function, then

% (F(x))"] = n(f ()" (x)-

Now what we need to pay attention to is the variables used in the function and
the variable that the derivative is taken with respect to. Notice that

dx



2

Similarly
i N 8dl d . de
V) =gy at ) =g
However p

a9y _ 0,8
dx(x ) = 9x°,

because the variables are the same and there is no chain rule 'inside derivative.

’

EXAMPLE 20.1.4. Here are several other examples:

4 2 du 4 2 dy
(1) I (tanu) = sec u (2) I (tany) = sec Vi,
d _ 2 d 2\ da
(3) e (tanx) = sec” x (4) 7 (a®) = 2a—dt

d d db
2402 so 2¢% =20 1 op

d
L2 = 2 then — (2 =
5 2 =a? + 1?2, then (%) = T i T

dt dt(

dA
6. If that A = 7172, then E(A) = %(nrz) so - = 27rrd—:. Here we are assuming that

the radius of the circle is changing with respect to time. In other words, we assume that r
is some (unknown) function of ¢.

EXAMPLE 20.1.5. Fancier examples: This time assume u, v, and y are functions of x.

u?v3) = 2u du —+ 23vzd

d
1. Using the product rule, — ix I

dx(

d 534 3, 2,04y
2. And dx(xy)—ny + x“3y I

Implicit and Explicit Functions

Sometimes we have an explicit formula for a function. For example, y = f(x) = ¢*
ory = f(x) = x2 + 3x + 1 defines y explicitly as a function of x. For each value of
x that we put into either function, we obtain a single output value.

Compare this to the equation xy> = 1. Here the relation between x and y is
defined implicitly. Rather than a function we have an equation involving both x
and y. In this case we could solve for y and obtain

1 1 1
2 . . .

= — which 1 = — =——.
y ~ Which implies y \/Eory NG

The result is not a function.
We will take as our definition that an implicit function is an equation involving
two or more variables.

EXAMPLE 20.1.6. Consider the implicit function given by x2 + y> = 1. We know that its
graph is a circle and is not an ordinary function since its graph does not pass the vertical
line test.

In this case, we could create two ordinary (explicit) functions from this single implicit
function. Solving for y we find that y> = 1 — x? so that y = V1 —x2 or y = —v/1 — x2.

EXAMPLE z0.1.7. Here’s another implicitly defined function: x> + yx? + y3 = 7. This time
there is no simple way to make one of more explicit functions from this relation.

The Goal

d
Given an implicit function in variables x and vy, find the derivative 7]/ without ever

solving for y explicitly. This is called implicit differentiation. The next example
illustrates how to do this.

Figure 20.1: The graph of the relation

xy? = 1 is not the graph of a function. It
does not pass the vertical line test.

Figure 20.2: The graph of the relation
x? 4+ y? = 1is not the graph of a

function. It does not pass the vertical
line test.




d
EXAMPLE 20.1.8. Determine % if x> + y*> = 1. Then calculate the slope of the curve at the

points (%, @), (0,1), an (1,0).

SOLUTION. Note first that since we want to determine %, we are treating x as the
independent variable. So we are taking the derivative with respect to x. Thus,
—(x =—(1

L@ ) = ()

S0

L)+ L =0

Using the chain rule

Now solve for Z—Z

SO

dy x

=2 (y#£0).
y (y #0)

1 3

Now we can determine slopes at specific points on the circle. The slope at (5, %°)
—<check that this point is on the circle— is given by substituting in the particular
x and y values of the point into the expression for %. Notice the notation used to
indicate the point at which the derivative is calculated.

dy o x 3 1 _ VB
xlgpy Vg ¢ V33
At (0,1)
dy x 0
s == =——=0.
dx 0,1) Y1) 1 Figure 20.3: The tangents at (%, ?) and
Looking at the graph of the circle, these two slopes look to be correct. Finally, the ©,2).
slope at (1,0) is not defined since Z—Z =— 5, (y # 0). The tangent line is vertical.
EXAMPLE 20.1.9 (Like an exam question). Let x% + 2xy = y3 +13. .
. . dy
. Find —=
1. Find -~ 2
2. Verify that (3,2) is on the curve.
3. Determine the equation of the tangent line at (3,2).
SOLUTION. (1) Take the derivative (with respect to x) of both sides of the equation.
d o _ 4,3 S
a(x +2xy) = a(y +13)
Using the product and chain rules
2x+2y+2xdl:0+3y2dl The graph of x? + 2xy = y° + 13.
dx dx
Gather all the Z—Z terms on the left side
dy 524y _
ZxE 3y I = 2x — 2y
dy
2x —3y%)=L = —2x —2
(2x =3y") X =2y
Solve for %
dy —2x—-2

dx  2x—3y2



2. Check that (3,2) is on the curve:
X2 4+2xy=32+203)(2) =21 and 13+y>=13+2% =21.
Thus (3,2) is on the curve.
3. Determine the tangent at (3,2). The slope is

L_dy| _=x-2y| _-2(3)-22) _-10 _5
dx (32) 2x — 3y2 (32) 2(3) — 3(22) —6 3

So the equation is
y—2=3(x—3) or y=3x—5+2 or y=3x—3.
EXAMPLE 20.1.10 (Like an exam question). Let x% + x2y2 = y3 —3.

1. Verify that (1,2) is on the curve.

2. Determine the equation of the tangent line at (1,2).

SOLUTION. Check that (1,2) is on the curve. At (1,2)
24 a?y?=1241%22=5 and y?-3=2>-3="5.
Thus (1,2) is on the curve.

2. To find the tangent at (1,2) we need the slope; we already have the point. We need
to find Z—Z Take the derivative (with respect to x) of both sides of the equation.

d ., - 2.0y _ 4,3
dx(x +xy)—dx(y +13)
dy
2x + 2xy? 4 2x°y =2 = 3y* -2
X+ 2xy” + Yo 3y
Gather all the % terms on the left side

(2x%y — 3y?) Z—Z = —2x — 2xy°

dy
Solve for I

dy — —2x —2xy?

dx  2x%y —3y2
Evaluate Z—Z at (1,2) to get the slope

_dy _ —2x —2xy? -2(1)—-2(1)(2?)  -10 5

m

= ix (12) T 2x2y —3y2 12) T210(2)-3(22) T -8 4

So the equation is

<
I
e
=
n
S

y—2= %(xfl) or y= %xf%JrZ or
EXAMPLE 20.1.11 (Easier). Let x + y? — 4y = 2.

1. Determine the equations of all the tangents when x = 2.

2. At what points are the tangents vertical.

SOLUTION. 1. First we must determine the y-coordinates of the points on the curve
that have x = 2 as the first coordinate. Since x + y2 —4y =2, whenx =2

24y —4y=2 so Y —4dy=yly—-4) =0 or y=0, 4

So the points are (2,0) and (2,4).



2. To find the tangents we need the slope so we need to find %. Take the derivative

(with respect to x) of both sides of the equation.

d 5 _d
ATy —dy) = —(2)
dy 44y _
dy _
(29 -4)7 = -1
Solve for %
dy  —1
e m (y #2)
At (2,0): Evaluate % at (2,0) to get the slope at the first point
a1 _ 11
dx|,0) 2 =420 2000-4 4

So the equation is
y—0=j(x-2) or y=jr-3

See Figure 20.4. At (2,4):

m= | — -1 -t 1
dx|p4 2 —4|ps 2(4)—4 4
So the equation is
y—4=-1(x-2) or y=-ix-3.
See Figure 20.4.
3. The graph will have a vertical tangent where the slope Z—Z = 2y_7_14 becomes

infinite. This is where the denominator goes to 0. This is at y = 2. When y = 2,
x+y?—4y=2 so x+22-4(2)=2 so x=2-4+8=6.
Thus, there is a vertical tangent at (6,2). See Figure 20.4.
EXAMPLE 20.1.12. Find % if cosy + sinx = x2.

SOLUTION. Take the derivative with respect to x and solve for %

i(cosy +sinx) = i(xz)

dx dx
—siny%+cosx:2x
—siny%:bc—cosx
dy  2x—cosx _ cosx —2x
dx siny ~ siny

EXAMPLE 20.1.13. Find 4 if ¥ = x.
SOLUTION. Take the derivative with respect to x of both sides of the equation and
solve for %.
d, . d
— (e y = —(X
€)= ()

dy
XYy _J —
e (}/—i—x )—1

dy
xy et 1
evy+e xdx
d
e"yx% =1-eYy
dy 1—ey

dx ~ ex

/

Figure 20.4: The graph of the
relationx + y? — 4y = 2.



lmAMHEau14Fmd if tan(xy) = x> +y.

SOLUTION. Take the derivative with respect to x of both sides of the equation and

solve for %.
(tan( v)) = (x +y)

sec?(xy) (szy +3x%y ) 2x+
dy

x2y3 sec? (xy) + 3x°y% sec? (xy )d— %
x3y? sec (xy)Z—y Z—y x2y3 sec? (xy)
(3x3y? sec?(xy) — )d—y = 2x — 3x%y3 sec? (xy)
dy  2x —3x%y®sec?(xy)

dx 3x3y2 sec2(xy) — 1

YOU TRY IT 20.1. Determine % given e¥t% = x.

fiz4+-x9. X,
O _ figkxdC _XP LI XML NOX OL MAMSNV
I T fip

YOU TRY IT zo0.2. Determine % given e¥ +9y = 4x° + 1.

6+ _ Xp
° = —— 'T'0T 11 X¥41L NOX OL ¥IMSNV

#x0c  Ap

YOU TRY IT z0.3. Determine the equation of the tangent line to Z—Z given e/ +9y = 4x5 +1 at
(1,2).

X + Aixg _xp
fixg— Jfi— — fip

(1— x)%— =7 — A yualuey, - 'l¢ 11 XML NOX OL YAMSNV



