
Inverse Functions

Review from Last Time: The Derivative of y = ln x

Last time we saw that

THEOREM 22.0.1. The natural log function is differentiable and

d
dx

(ln x) =
1
x

.

More generally, the chain rule version is

d
dx

(ln u) =
1
u
· du

dx
.

EXAMPLE 22.0.2. Determine Dx
[
(ln(2x + 1))5].

SOLUTION. Use the chain rule.

Dx[(ln(2x + 1))5] = Dx(u5) = 5u4 du
dx

= 5(ln(2x + 1))4 · 1
2x + 1

· 2 =
10[ln(2x + 1)]4

2x + 1
.

An Important Special Case. Since we can only take logs of positive numbers, often
times we use the log of an absolute value, e.g., ln |x|. We can find the derivatives of
such expressions as follows.

Dx[ln |x|] =

Dx[ln x] if x > 0,

Dx[ln(−x)] if x < 0
=

 1
x if x > 0,
1
−x (−1) = 1

x if x < 0
=

1
x

if x 6= 0

In other words, we get the ‘same rule’ as without the absolute value:

THEOREM 22.0.3. For x 6= 0,

Dx(ln |x|) =
1
x

The chain rule version when u is a function of x is

d
dx

(ln |u|) = 1
u
· du

dx
.

EXAMPLE 22.0.4. Here’s one that involves a number of log properties:

Dt

[
ln
∣∣∣∣ et cos t√

t2 + 1

∣∣∣∣] = Dt

[
ln et + ln | cos t| − ln

√
t2 + 1

∣∣∣
= Dt

[
t + ln | cos t| − 1

2 ln |t2 + 1|
]

= 1 +
1

cos t
· (− sin t)− 2t

2(t2 + 1)

= 1− tan t− t
t2 + 1
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YOU TRY IT 22.1. Try finding these derivatives. Use log rules to simplify the functions before
taking the derivative.

(a) Dx
[
ln |6x3 sin x|

]
(b) Dx

[
6x3 ln | sin x|

]
(different)

(c) Dx

[
ln

∣∣∣∣∣ x4 − 1
x2 + 1

∣∣∣∣∣
]

(d) Dt

[
ln(t(e

t))
]

(e) Dx

[
ln 3
√

3x3 + x + 1
]

(f ) Ds

[
ln (5ln s)

]

answertoyoutryit22.1.UseTheorem22.0.3andlogproperties,thensimplify.

(a)Dx[ln|6x3sinx|]=Dx[ln|6x3|+ln|sinx|]=3
x
+cotx(b)18x3ln|sinx|+6x3cotx

(c)Dx[ln∣∣∣∣x4−1
x2+1

∣∣∣∣]=Dx[ln∣∣∣x4−1∣∣∣−ln∣∣∣|x2+1∣∣∣]=4x3

x4−1−
2x

x2+1
(d)Dt[ln(t(et)

)]=Dt[etlnt]=etlnt+
et

1
t

(e)Dx[ln3√3x3+x+1]=Dx[1
3·ln

3√3x3+x+1]=1
3

9x2+1
3x3+x+1

(f)Ds[ln(5lns)]=Ds[lnsln5]=
ln5

s
Inpart(f),rememberthatln5isjustaconstant.
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The Derivative of Other Exponential Functions: y = bx

When we first determined the derivative of ex we were looking at general exponen-
tial functions of the form y = f (x) = bx. Remember that we picked out e to be the

number so that lim
h→0

eh − 1
h

= 1 which then made computing the derivative of ex

very easy. But what about all the other exponential functions of the form y = bx?
Is there a way to determine their derivatives? Indeed, there is! And it turns out to
be pretty easy to do.

Method 1: This first development of the derivative of y = bx here is different
than in your text. We will use implicit differentiation. Suppose that b > 0 and

y = f (x) = bx. Our goal is to find
dy
dx

= f ′(x) =
d

dx
(bx).

Start with y = bx

Take the logs of both sides ln y = ln bx

Simplify ln y = x

constant︷︸︸︷
ln b

Take the derivative
d

dx
(ln y) =

d
dx

x ln b

1
y

dy
dx

= ln b

Solve
dy
dx

= y ln b

Substitute back for y
dy
dx

= bx ln b

That was easy. So we have

THEOREM 22.0.5 (Derivative of bx). If b > 0, then for all x,

d
dx

(bx) = bx ln b.

The chain rule version when u is a function of x is

d
dx

(bu) = bu ln b
du
dx

.

Method 2: We could also determine the derivative of y = bx using inverse func-
tions. Because ex and ln x are inverse functions, one undoes the other, so if we
apply both of them in succession, we end up with the original input.

ln(ex) = x and eln(x) = x.

In particular,
bx = eln bx

= ex ln b

where we used a log property at the last step to bring the power out front. So bx is
just an exponential function of the form ekx where k = ln b is a constant. 1 So 1 This is the great advantage of working

with logs: Logs turn products into
sums and powers into products. These
simplify many calculations.

d
dx

(bx) =
d

dx

(
ex ln b

)
= ln bex ln b = (ln b)bx = bx ln b . (22.1)

We get the same result as above.
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EXAMPLE 22.0.6. Find the derivatives of the following functions.

(a) y = 2x (b) z = 15(3t/10) (c) y = 5t3 sin t (d) y = 4x tan(4x)

Solution. Using Theorem 22.0.5,

(a)
d

dx
(2x) = 2x ln 2.

(b) This time we use the chain rule:

d
dt

(
15(3t/10)

)
= 15(3t/10) ln 3 ·

d
dt (

t
10 )︷︸︸︷

1
10 = 3

2 (3
t/10) ln 3.

(c) Use the chain rule in combination with Theorem 22.0.5,

d
dt
(
5(

u︷ ︸︸ ︷
t3 sin t)) = 5t3 sin t ln 5 ·

d
dt (t3 sin t)︷ ︸︸ ︷

(3t2 sin t− t3 cos t) .

(d) Use the product rule:

d
dx

(4x tan(4x)) = 4x ln 4 · tan(4x)+ 4x sec2(4x) · 4 = 4x(ln 4 tan(4x)+ 4 sec2(4x)).

Logarithmic Differentiation

There are still types of functions that we have not tried to differentiate yet. Some-
times we can make use of our existing techniques and clever algebra to find
derivatives of very complicated functions. Logarithmic differentiation refers to
the process of first taking the natural log of a function y = f (x), then solving for

the derivative
dy
dx

. On the surface of it, it would seem that logs would only make a
complicated function more complicated. But remember that logs turn powers into
products and products into sums. That’s the key.

Here’s a neat problem to illustrate the idea.

EXAMPLE 22.0.7. Use the chain rule and implicit differentiation along with logs to find the
derivative of y = f (x) = xx.

Solution. We begin by taking the natural log of both sides and simplifying using
log properties.

ln y = ln xx Powers
= x ln x.

Remember we want to find
dy
dx

, so take the derivative of both sides (implicitly on
the left).

d
dx

(ln y) =
d

dx
(x ln x)⇒ 1

y
· dy

dx
= 1 · ln x + x · 1

x
= ln(x) + 1

dy
dx

Solve
= y[ln(x) + 1]

dy
dx

Substitute
= xx[ln(x) + 1]

In other words, we have shown that
d

dx
(xx) = xx[ln(x) + 1]. Neat! Easy!

Here are a couple more.
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EXAMPLE 22.0.8. Find the derivative of y = (1 + x2)tan x.

Solution. Take the natural log of both sides and simplify using log properties.

ln y = ln(1 + x2)tan x Powers
= tan x ln(1 + x2).

Take the derivative of both sides (implicitly on the left) and solve for
dy
dx

.

d
dx

(ln y) =
d

dx

(
tan x ln(1 + x2)

)
1
y
· dy

dx
= sec2 x ln(1 + x2) + tan x · 2x

1 + x2

dy
dx

Solve
= y

[
sec2 x ln(1 + x2) +

2x tan x
1 + x2

]
dy
dx

Substitute
= ln(1 + x2)tan x

[
sec2 x ln(1 + x2) +

2x tan x
1 + x2

]

So
d

dx

(
ln(1 + x2)tan x

)
= ln(1 + x2)tan x

[
sec2 x ln(1 + x2) +

2x tan x
1 + x2

]
. Not bad!

EXAMPLE 22.0.9. Find the derivative of y = (ln x)x3
.

Solution. Be careful. This function is NOT the same as ln(xx3
) which would

equal x3 ln x. Instead, take the natural log of both sides and simplify using log
properties.

ln y = ln(ln x)x3 Powers
= x3 ln(ln x).

Take the derivative of both sides (implicitly on the left) and solve for
dy
dx

.

Do you see the difference when com-
pared to ln(xx3

)

1
y
· dy

dx
= 3x2 ln(ln x) + x3 · 1

ln x
· 1

x

1
y
· dy

dx
Solve
= y

[
3x2 ln(ln x) +

x3

x ln x

]
dy
dx

Substitute
= (ln x)x3

[
3x2 ln(ln x) +

x3

x ln x

]

Logs can also be used to simplify products and quotients.

EXAMPLE 22.0.10. Find the derivative of y =
(x2 − 1)5

√
1 + x2

x4 + 4
.

Solution. Use logarithmic differentiation to avoid a complicated quotient rule
derivative Take the natural log of both sides and then simplify using log proper-
ties.

ln y = ln

(
(x2 − 1)5

√
1 + x2

x4 + 4

)
Log Prop

= ln(x2 − 1)5 + ln(1 + x2)1/2 − ln(x4 + 4)
Log Prop

= 5 ln(x2 − 1) +
1
2

ln(1 + x2)− ln(x4 + 4).

Take the derivative of both sides and solve for
dy
dx

.
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1
y
· dy

dx
=

10x
x2 − 1

+
x

1 + x2 −
4x3

x4 + 4

dy
dx

Solve
= y

[
10x

x2 − 1
+

x
1 + x2 −

4x3

x4 + 4

]
dy
dx

Substitute
=

(x2 − 1)5
√

1 + x2

x4 + 4

[
10x

x2 − 1
+

x
1 + x2 −

4x3

x4 + 4

]
That would have been a real mess to do with the quotient rule (which would also
require the product rule and the chain rule).

Problems

The following questions will be on the lab tomorrow or are future WebWorK problems. Get
a head start.

1. Find the derivatives of the following functions. Use logarithmic differentiation where
helpful.

(a) y = (sin x)x (b) y = xsin x (c) (sin x)sin x (d) (arcsin x)x2
(e)
(

1 +
1
x

)x

2. Find the derivatives of these functions using the derivative formula for a general expo-
nential function that we developed before Exam II. (See Theorem 3.18 on page 194).

(a) 5 · 6x (b) 2x cot x (c) xπ + πx (d) x4 · 4x

(e) For which values of x does x4 · 4x have a horizontal tangent?

Answers.

1. (a) ln y = ln(sin x)x = x ln(sin x) ⇒ 1
y
· dy

dx
= ln(sin x) +

x cos x
sin x

⇒ dy
dx

=

(sin x)x(ln(sin x) + x cot x).

(b) ln y = ln xsin x = sin x ln x ⇒ 1
y
· dy

dx
= cos x ln x+(sin x)

1
x
⇒ dy

dx
= xsin x

(
cos x ln x +

sin x
x

)
.

(c) ln y = ln(sin x)sin x = sin x ln(sin x) ⇒ 1
y
· dy

dx
= cos x ln(sin x) + (sin x)

cos x
sin x

⇒ dy
dx

=

(sin x)sin x cos x[ln(sin x) + 1].

(d) ln y = ln(arcsin x)x2
= x2 ln(arcsin x)⇒ 1

y
· dy

dx
= 2x ln(arcsin x)+ x2 1

arcsin x
1√

1− x2
⇒

dy
dx

= (arcsin x)x2

(
2x ln(arcsin x) +

x2

(arcsin x)
√

1− x2

)
.

(e) ln y = ln
(

1 +
1
x

)x
= x ln

(
1 +

1
x

)
⇒ 1

y
· dy

dx
= ln

(
1 +

1
x

)
+ x · 1(

1 + 1
x

) · −1
x2 ⇒

1
y
· dy

dx
= ln

(
1 +

1
x

)
− 1

x
(

1 + 1
x

) ⇒ 1
y
· dy

dx
= ln

(
1 +

1
x

)
− 1

(x + 1)
⇒ dy

dx
=

(
1 +

1
x

)x [
ln
(

1 +
1
x

)
− 1

(x + 1)

]
.

2. (a)
d

dx
[5 · 6x] = 5 · 6x ln 6 = 5 ln 6(6x).

(b)
d

dx
[2x cot x] = 2x ln 2 cot x− 2x csc2 x = 2x[ln 2 cot x− csc2 x].

(c)
d

dx
[xπ + πx] = πxπ−1 + πx ln π (d)

d
dx

[x4 · 4x] = 4x3 · 4x + x4 · 4x ln 4 = x3 · 4x[4 + x ln 4]

(e) From the previous part, the slope is 0 when x3 · 4x[4 + x ln 4] = 0. Therefore x = 0 or

x = − 4
ln 4

.
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