Working out the Critical Point and Closed Interval Theorems

ROM THE GRAPHS we saw that sometimes we have extrema at critical points. The next theorem makes the connection explicit.

THEOREM 27.1.1 (CPT: The Critical Point Theorem). If f has a local max or min at c, then c is a critical point of f.

Proof. We prove the case where f has a a local max at c. A similar proof works for a local min. There are two possibilities: Either f is not differentiable at c or it is.

- 1. If *f* is not differentiable at *c*, then f'(c) DNE and so *c* is a _____
- 2. If *f* is differentiable, then we need to show f'(c) = 0 for it to be a critical point. *f* has a local max at *c* which means $f(x) \le f(c)$ for all *x* near *c* which means

$$f(x) - f(c) \le 0 \quad \text{near } c.$$

Because f is differentiable at c, the derivative

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
 exists.

So both one-sided limits (derivatives) exist and are equal at c. So

$$f'(c) = \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} = ----- \ge -----$$

while

$$f'(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} = ----- \le -----$$

Since both one-sided limits are equal, the only possibility is that they are both _____. In other words, f'(c) = 0 so c is a ______.

Recap: Putting Theorems Together. Now assume that f is continuous on the closed interval [a, b]. Then the EVT implies that f has an **absolute max** at some point c in [a, b]. There are two possibilities:

- 1. *c* is one of the endpoints, c = a or c = b
- 2. OR *c* is between *a* and *b*...so a < c < b. But then *c* is not only an absolute max, it is also a **relative max** on (a, b). So the CPT says that *c* is a critical point of *f*.

The same is true for an absolute min of f on [a, b]. Thus, we have proven

THEOREM 27.1.2 (CIT: The Closed Interval Theorem). Let f be a continuous function on a closed interval [a, b]. Then the absolute extrema of f occur either at critical points of f on the open interval (a, b) or at the endpoints a and/or b.

Algorithm (Recipe) for Finding Absolute Extrema. To find the absolute extrema of a continuous function f on a closed interval [a, b]

- 1. Find the critical points of *f* on the open interval (*a*, *b*) and evaluate *f* at each such point.
- 2. Evaluate *f* at each of the endpoints, x = a and x = b.
- 3. Compare the values; the largest is the absolute max and the smallest is the absolute min.

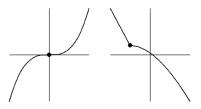
DEFINITION. Assume that f is defined at c. Then c is a **critical point of** f if either

1. f'(c) does not exist or

2.
$$f'(c) = 0$$
.

YOU TRY IT 27.12. Do the proof for the case when *f* has a local min at *c*. What changes?

Caution: Notice that the CPT does NOT say that if *c* is a critical point, then *f* has a relative extrema at *c*. It is possible to have a f'(c) = 0 or DNE and not have an extreme point (see below).



Working out the proof of Rolle's Theorem

 $\mathbb R$ olle's theorem deals with functions that have the same starting and ending values.

THEOREM 27.1.3 (Rolle's Theorem). Assume that

- 1. *f* is continuous on the closed interval [*a*, *b*];
- 2. *f* is differentiable on the open interval (*a*, *b*);
- 3. f(a) = f(b), i.e., *f* has the same value at both endpoints.

Then there's some point *c* between *a* and *b* so that f'(c) = 0.

EXAMPLE 27.1.4. How does Rolle's theorem apply to tossing a ball up and catching it at the same height? What about about walking a long a straight line and starting and ending at the same point?

1. Both extreme values (max and min) occur at the endpoints of [*a*, *b*] (draw such a function) or

occur at the endpoints of [a, b] (draw such a function) or

- 2. at least one of the extreme values occurs at a critical point of *f*.
- 1. In the first case f(a) = f(b) = d is **both** the **minimum** value and the **maximum** value of f on [a, b]. This can only happen if f is constant on the interval. But if f is constant, f'(c) = 0 for *any* point c between a and b.
- 2. In the second case, if *f* has an extreme point *c* between *a* and *b*, since *f* is differentiable, then by the _____ Theorem f'(c) = _____.

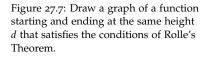
In either case there is a point *c* where f'(c) = 0.

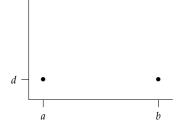
EXAMPLE 27.1.5. Show how Rolle's theorem applies to $f(x) = x^2 - 5x$ on [1,4].

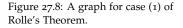
Solution. Check that f(x) satisfies the three conditions of Rolle's Theorem.

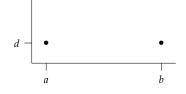
- 1. f is continuous on the closed interval [1,4] because f(x) is a
- 2. *f* is differentiable on the open interval (1, 4) because f(x) is a _____
- 3. $f(1) = _$ and $f(4) = _$, i.e., *f* has the _____ value at both endpoints.

The three conditions are satisfied so Rolle's Theorem applies. So there is some point *c* between 1 and 4 so that f'(c) = _____. But f'(x) = ______ = 0 at x = _____. So c = _____.









Working out the proof of the Mean Value Theorem

R OLLE'S THEOREM IS USED to prove the more general result, called the Mean Value theorem. You should be able to state this theorem and draw a graph that illustrates it.

THEOREM 27.6.6 (MVT: The Mean Value Theorem). Assume that

- 1. *f* is continuous on the closed interval [*a*, *b*];
- 2. *f* is differentiable on the open interval (*a*, *b*);

Then there is some point *c* in (a, b) so that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

This is the same as saying: f(b) - f(a) = f'(c)(b - a).

Proof. Strategy: Modify *f* so that we can apply Rolle's theorem.

Let $\ell(x)$ be the (secant) line (to f) that passes through the points (a, f(a)) and (b, f(b)). Even though we have not figured out the equation for $\ell(x)$ we still know its derivative:

$$\ell'(x) = \text{slope of the line } \ell = \frac{\Delta y}{\Delta x} =$$
 (27.2)

Since $\ell(x)$ is differentiable everywhere it is also _____

Now consider the difference function $g(x) = f(x) - \ell(x)$. Since f and ℓ are both continuous on [a, b], then g is also ______. Since f and ℓ are both differentiable on (a, b), then g is also ______.

Now check the values of g at the endpoints a and b (look at the graph):

$$g(a) = f(a) - \ell(a) =$$
 _____ and $g(b) = f(b) - \ell(b) =$ _____

So Rolle's theorem applies to g. This means there is a point c between a and b such that g'(c) = ______. But then $g'(c) = f'(c) - \ell'(c) = 0$ which means using Equation (27.2)

$$f'(c) = \ell'(c) = _$$

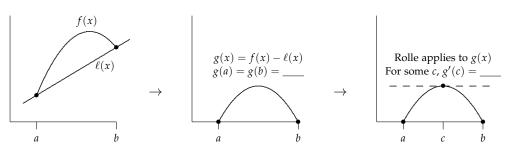


Figure 27.10: Geometric recap of the proof of the MVT. f(x) and $\ell(x)$ have the same value at the endpoints a and b so their difference is _____ at both a and b. Consequently Rolle's theorem applies to g and there is a point c between a and b such that g'(c) = ____.

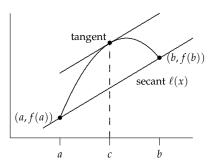
EXAMPLE 27.6.7. Show how the MVT theorem applies to $f(x) = x^2$ on [1,3].

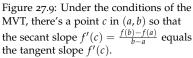
Solution. Check that f(x) satisfies the two conditions of the MVT.

- 1. *f* is continuous on the closed interval [1,3] because f(x) is a _
- 2. *f* is differentiable on the open interval (1,3) because f(x) is a _____

The two conditions are satisfied so the MVT applies.

So there is some point *c* between 1 and 3 so that $f'(c) = \frac{f(3)-f(1)}{3-1} =$ _____. But f'(x) = 2x, so c =_____.





Using the MVT: Increasing and Decreasing Functions

HE MVT IS valuable because it is used to prove lots of other calculus results. First let's be clear on what increasing and decreasing functions are.

DEFINITION 27.6.8. Assume f is defined on an interval I. f is **increasing on** I if whenever a and b are in I and a < b, then f(a) < f(b). Likewise, f is **decreasing on** I if whenever a and b are in I and a < b, then ______.

EXAMPLE 27.6.9. Draw an increasing differentiable function f(x) in the margin. What can you say about its slope? Consequently the following theorem should not be surprising.

THEOREM 27.6.10 (Increasing/Decreasing Test). 1. If f'(x) > 0 for all x in an interval I, then f is increasing on I.

2. If f'(x) < 0 for all x in an interval *I*, then *f* is decreasing on *I*.

Proof. We will use the MVT to prove this. We'll prove (2). Try proving (1) as an Extra Credit problem.

In case (2) we assume f'(x) for all x in I.

Let *a* and *b* be any two points in *I* with a < b. Using the Definition 27.6.8, to show that *f* is decreasing, we need to show that _____.

But *f* is differentiable on *I* so *f* is ______ on [a, b], and of course, *f* differentiable on (a, b). So the MVT applies to *f* on [a, b]. So there's a point *c* in ______ so that

 $f'(c) = _____.$

This means

$$f(b) - f(a) = _$$

From the assumption in case (2), we know that f'(c) and (b-a) _____. So

$$f(b) - f(a) = \overline{f'(c)} \cdot \overline{(b-a)} < ___$$

If f(b) - f(a) < 0, then f(b) <_____, so *f* is _____

YOU TRY IT 27.13. Prove case (1) of the Increasing/Decreasing Test where f'(x) > 0.

EXAMPLE 27.6.11. Let $f(x) = x^4 - 6x^2 + 1$. Where is f increasing? Decreasing? Where does it have relative extrema? What theorem do you use to answer these questions?

Figure 27.11: Draw an increasing differentiable function f(x). What can you say about its slope f'(x)?

