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Working out the Critical Point and Closed Interval Theorems

F
rom the graphs we saw that sometimes we have extrema at critical points.
The next theorem makes the connection explicit.

DEFINITION. Assume that f is
defined at c. Then c is a critical
point of f if either

1. f 0(c) does not exist or

2. f 0(c) = 0.
THEOREM 27.1.1 (CPT: The Critical Point Theorem). If f has a local max or min at c, then c is
a critical point of f .

Proof. We prove the case where f has a a local max at c. A similar proof works for
a local min. There are two possibilities: Either f is not differentiable at c or it is.

1. If f is not differentiable at c, then f 0(c) DNE and so c is a .

2. If f is differentiable, then we need to show f 0(c) = 0 for it to be a critical point.
f has a local max at c which means f (x)  f (c) for all x near c which means

f (x)� f (c)  0 near c.

Because f is differentiable at c, the derivative

f 0(c) = lim
x!c

f (x)� f (c)
x � c

exists.

So both one-sided limits (derivatives) exist and are equal at c. So

f 0(c) = lim
x!c�

f (x)� f (c)
x � c

= �

while
f 0(c) = lim

x!c+
f (x)� f (c)

x � c
=  .

Since both one-sided limits are equal, the only possibility is that they are both
. In other words, f 0(c) = 0 so c is a .

YOU TRY IT 27.12. Do the proof for
the case when f has a local min at
c. What changes?

Caution: Notice that the CPT does
NOT say that if c is a critical point,
then f has a relative extrema at c. It is
possible to have a f 0(c) = 0 or DNE and
not have an extreme point (see below).

•

.........
........
.......
.......
.......
.......
.......
........
........
..........
..........
.............
.....................................................

............
..........
..........
........
........
.......
.......
.......
.......
.......
........
........

•

................................................................................................................................................................................................................................................

Recap: Putting Theorems Together. Now assume that f is continuous on the closed
interval [a, b]. Then the EVT implies that f has an absolute max at some point c in
[a, b]. There are two possibilities:

1. c is one of the endpoints, c = a or c = b

2. OR c is between a and b. . . so a < c < b. But then c is not only an absolute max,
it is also a relative max on (a, b). So the CPT says that c is a critical point of f .

The same is true for an absolute min of f on [a, b]. Thus, we have proven

THEOREM 27.1.2 (CIT: The Closed Interval Theorem). Let f be a continuous function on a closed
interval [a, b]. Then the absolute extrema of f occur either at critical points of f on the open
interval (a, b) or at the endpoints a and/or b.

Algorithm (Recipe) for Finding Absolute Extrema. To find the absolute extrema of a
continuous function f on a closed interval [a, b]

1. Find the critical points of f on the open interval (a, b) and evaluate f at each
such point.

2. Evaluate f at each of the endpoints, x = a and x = b.

3. Compare the values; the largest is the absolute max and the smallest is the
absolute min.
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Working out the proof of Rolle’s Theorem

R
olle’s theorem deals with functions that have the same starting and ending
values.

THEOREM 27.1.3 (Rolle’s Theorem). Assume that

1. f is continuous on the closed interval [a, b];

2. f is differentiable on the open interval (a, b);

3. f (a) = f (b), i.e., f has the same value at both endpoints.

Then there’s some point c between a and b so that f 0(c) = 0.

Figure 27.7: Draw a graph of a function
starting and ending at the same height
d that satisfies the conditions of Rolle’s
Theorem.

a b

d • •

EXAMPLE 27.1.4. How does Rolle’s theorem apply to tossing a ball up and catching it at the
same height? What about about walking a long a straight line and starting and ending at
the same point?

Proof. Since f is continuous on the closed interval [a, b], f must have absolute
maximum and minimum values on [a, b] by the
Theorem. There are two possibilities: either

1. Both extreme values (max and min) occur at the endpoints of [a, b] (draw such a
function) or

Figure 27.8: A graph for case (1) of
Rolle’s Theorem.

a b

d • •
occur at the endpoints of [a, b] (draw such a function) or

2. at least one of the extreme values occurs at a critical point of f .

1. In the first case f (a) = f (b) = d is both the minimum value and the maximum
value of f on [a, b]. This can only happen if f is constant on the interval. But if f
is constant, f 0(c) = 0 for any point c between a and b.

2. In the second case, if f has an extreme point c between a and b, since f is differ-
entiable, then by the Theorem f 0(c) = .

In either case there is a point c where f 0(c) = 0.

EXAMPLE 27.1.5. Show how Rolle’s theorem applies to f (x) = x2 � 5x on [1, 4].

Solution. Check that f (x) satisfies the three conditions of Rolle’s Theorem.

1. f is continuous on the closed interval [1, 4] because f (x) is a

2. f is differentiable on the open interval (1, 4) because f (x) is a

3. f (1) = and f (4) = , i.e., f has the value
at both endpoints.

The three conditions are satisfied so Rolle’s Theorem applies.
So there is some point c between 1 and 4 so that f 0(c) = .
But f 0(x) = = 0 at x = . So c = .
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Working out the proof of the Mean Value Theorem

R
olle’s Theorem is used to prove the more general result, called the Mean
Value theorem. You should be able to state this theorem and draw a graph

that illustrates it.

THEOREM 27.6.6 (MVT: The Mean Value Theorem). Assume that

1. f is continuous on the closed interval [a, b];

2. f is differentiable on the open interval (a, b);

Then there is some point c in (a, b) so that

f 0(c) =
f (b)� f (a)

b � a
.

This is the same as saying: f (b)� f (a) = f 0(c)(b � a).

a c b
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(b, f (b))

(a, f (a))

Figure 27.9: Under the conditions of the
MVT, there’s a point c in (a, b) so that
the secant slope f 0(c) = f (b)� f (a)

b�a equals
the tangent slope f 0(c).

Proof. Strategy: Modify f so that we can apply Rolle’s theorem.
Let `(x) be the (secant) line (to f ) that passes through the points (a, f (a)) and

(b, f (b)). Even though we have not figured out the equation for `(x) we still know
its derivative:

`0(x) = slope of the line ` =
Dy
Dx

= . (27.2)

Since `(x) is differentiable everywhere it is also .

Now consider the difference function g(x) = f (x)� `(x). Since f and ` are both
continuous on [a, b], then g is also . Since f and ` are
both differentiable on (a, b), then g is also .

Now check the values of g at the endpoints a and b (look at the graph):

g(a) = f (a)� `(a) = and g(b) = f (b)� `(b) = .

So Rolle’s theorem applies to g. This means there is a point c between a and b such
that g0(c) = . But then g0(c) = f 0(c)� `0(c) = 0 which means using
Equation (27.2)

f 0(c) = `0(c) = .
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g(x) = f (x)� `(x)
g(a) = g(b) =
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Rolle applies to g(x)
For some c, g0(c) =

Figure 27.10: Geometric recap of the
proof of the MVT. f (x) and `(x) have
the same value at the endpoints a and b
so their difference is at both a and
b. Consequently Rolle’s theorem applies
to g and there is a point c between a
and b such that g0(c) = .

EXAMPLE 27.6.7. Show how the MVT theorem applies to f (x) = x2 on [1, 3].

Solution. Check that f (x) satisfies the two conditions of the MVT.

1. f is continuous on the closed interval [1, 3] because f (x) is a

2. f is differentiable on the open interval (1, 3) because f (x) is a

The two conditions are satisfied so the MVT applies.
So there is some point c between 1 and 3 so that f 0(c) = f (3)� f (1)

3�1 = .
But f 0(x) = 2x, so c = .
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Using the MVT: Increasing and Decreasing Functions

T
he MVT is valuable because it is used to prove lots of other calculus results.
First let’s be clear on what increasing and decreasing functions are.

DEFINITION 27.6.8. Assume f is defined on an interval I. f is increasing on I if whenever
a and b are in I and a < b, then f (a) < f (b). Likewise, f is decreasing on I if whenever
a and b are in I and a < b, then .

EXAMPLE 27.6.9. Draw an increasing differentiable function f (x) in the margin. What can
you say about its slope? Consequently the following theorem should not be surprising.

Figure 27.11: Draw an increasing
differentiable function f (x). What can
you say about its slope f 0(x)?

THEOREM 27.6.10 (Increasing/Decreasing Test). 1. If f 0(x) > 0 for all x in an interval I, then
f is increasing on I.

2. If f 0(x) < 0 for all x in an interval I, then f is decreasing on I.

Proof. We will use the MVT to prove this. We’ll prove (2). Try proving (1) as an
Extra Credit problem.

In case (2) we assume f 0(x) for all x in I.

Let a and b be any two points in I with a < b. Using the Definition 27.6.8,
to show that f is decreasing, we need to show that .

a b

•

•

Figure 27.12: Here’s what we are trying
to prove in case (2): That f (b) < f (a).

But f is differentiable on I so f is on [a, b], and
of course, f differentiable on (a, b). So the MVT applies to f on [a, b]. So there’s a
point c in so that

f 0(c) = .

This means
f (b)� f (a) = .

From the assumption in case (2), we know that f 0(c) and
(b � a) . So

f (b)� f (a) =
z }| {
f 0(c) ·

z }| {
(b � a) < .

If f (b)� f (a) < 0, then f (b) < , so f is .

YOU TRY IT 27.13. Prove case (1) of the Increasing/Decreasing Test where f 0(x) > 0.

EXAMPLE 27.6.11. Let f (x) = x4 � 6x2 + 1. Where is f increasing? Decreasing? Where does
it have relative extrema? What theorem do you use to answer these questions?


