5-Minute Review: Conjugates

Conjugates are usually discussed in reference to expressions involving square roots and typically have the form $a+\sqrt{b}$ and $a-\sqrt{b}$, where a can be any expression. For example, $\sqrt{x}+\sqrt{3}$ and $\sqrt{x}-\sqrt{3}$. Conjugates are useful because when you multiply them together, the 'middle terms' cancel: e.g.,

$$
(a+\sqrt{b})(a-\sqrt{b})=a^{2}-b
$$

or

$$
(\sqrt{x}+\sqrt{3})(\sqrt{x}-\sqrt{3})=x-3
$$

EXAMPLE 4.0.1. Use conjugates to simplify the following expression: $\frac{4}{\sqrt{x+2}-\sqrt{x}}$.
Solution. Multiply both the numerator and denominator by the conjugate:
$\frac{4}{\sqrt{x+2}-\sqrt{x}} \cdot \frac{\sqrt{x+2}+\sqrt{x}}{\sqrt{x+2}+\sqrt{x}}=\frac{4(\sqrt{x+2}+\sqrt{x})}{x+2-x}=\frac{4(\sqrt{x+2}+\sqrt{x})}{2}=2(\sqrt{x+2}+\sqrt{x})$

EXAMPLE 4.0.2. Use conjugates to simplify the following expression: $\frac{\sqrt{x+h}-\sqrt{x}}{h}$.
Solution. Multiply both the numerator and denominator by the conjugate:
$\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}=\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}=\frac{h}{h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}$.

YOU TRY IT 4.1. Simplify each of these expressions by using an appropriate conjugate.
(a) $\frac{x-5}{\sqrt{x}-\sqrt{5}}$
(b) $\frac{2 x-18}{\sqrt{x}-3}$
(c) $\frac{\sqrt{8+h}-\sqrt{8}}{h}$

* See how conjugates are used to calculate limits in the Day 5 (scroll to page 12): http://math.hws.edu/~mitchell/Math130F16/tufte-latex/Day05.pdff.

