My Office Hours: M \& W 2:30-4:00, Tu 2:00-3:30, \& F 1:30-2:30 or by appointment. Math Intern: Sun: 2:00-5:00, 7:00-10pm; Mon thru Thu: 3:00-5:30 and 7:00-10:30pm in Lansing 310. Website: http://math. hws.edu/~mitchell/Math131F15/index.html.
. Practice. Read 5.4 on average values and the Mean Value Theorem for Integrals. Review 5.3 as needed.

1. (a) Δ Practice is important. Page 373 ff . Try \#9, 11, 13 and 15 .
(b) Using FTC I: Page 374 \#61-6 and 101. (Even Answers: $e^{x},-\frac{2 x}{x^{2}+1},-\frac{1}{x^{2}+1}$.)
(c) Working with definite integrals: Page 376 \#87 (simplify first), 89 , and 91 .
(d) Assigned last time: Working with definite integrals: Page 374: \#23, 27, 33, 37-43(odd), and 57. Remember, net area is signed area, so area below the axis is negative.

* Hand In Due Next Time
o. WeBWork set Day07 (due Thursday night). Some of the Hand-in problems are similar. Do them together.

1. Review: This problem asks you to compute a definite integral two different ways: using Riemann sums and using the FTC. Review the Homework I handed back. The answers are on line.
(a) Determine and simplify the formula for $\operatorname{Right}(n)$ for the function $f(x)=x^{2}-x$ on the interval $[1,4]$. Do this on another sheet and staple it to this one. Put your final simplified formula below:

$$
\operatorname{Right}(n)=
$$

(b) Determine the value of $\int_{1}^{4}\left(x^{2}-x\right) d x$ by using a limit of Riemann sums. Use correct limit notation.
(c) Using the Fundamental Theorem of Calculus, quickly evaluate $\int_{1}^{4}\left(x^{2}-x\right) d x$. (Are the answers the same?)
2. (a) Page $359 \# 38$. Be careful, net area is signed area. Show your work using properties of the integral.
(b) Use the diagram on page 359 for \#35-38 to determine $\int_{2 \pi}^{0} x \sin x d x$. Be careful of signs. Show your work using properties of the integral.
3. Use the FTC (which part) to evaluate the following. Show your work.
(a) $\int_{1}^{2}\left(\frac{2}{s}-\frac{4}{s^{2}}\right) d s=$
(b) $\int_{0}^{2 \pi} \sec \frac{x}{8} \tan \frac{x}{8} d x=$
4. Use the FTC (which part) to simplify the following. Show your work. (See Example 5, p. 369.)
(a) $\frac{d}{d x}\left[\int_{3}^{x} t^{2} \ln t d t\right]=$
(b) $\frac{d}{d x}\left[\int_{x}^{12} \cos \left(t^{3}\right) d t\right]=$
(c) $\frac{d}{d x}\left[\int_{0}^{\sin x} \frac{1}{1+t^{6}} d t\right]=$
5. This is just like the earlier graphing problems you did on Lab. Review if necessary. Let $A(x)=\int_{0}^{x} f(t) d t$, where $f(t)$ is the function graphed below. $A(x)$ is the net area between f and the axis on the interval between 0 and the endpoint x. Use this relationship and the part of the Fundamental Theorem that we proved today in class to answer the following questions. First determine:

(c) At what point(s), if any, does A have a local max?

What about mins?
(d) Make a rough sketch of the graph of $A(x)$ on the same axes using your values of A including maxs and mins.

