My Office Hours: M \& W 2:30-4:00, Tu 2:00-3:30, \& F 1:30-2:30 or by appointment. Math Intern: Sun: 2:00-5:00, 7:00-10pm; Mon thru Thu: 3:00-5:30 and 7:00-10:30pm in Lansing 310. Website: http://math.hws.edu/~mitchell/Math131F15/index.html.

* Practice and Reading

1. (a) Reread and review Section 5.4 on average values. Read Section 5.5 on Substitution.
(b) \measuredangle Average values: Page 381 \#25, 27, 29, 31.
(c) Read about definite integrals of odd and even functions (pages 377-78). Then do page $380-81$ \#7, 9 , 15 , and 43 .
(d) MVTI: Page $382 \# 35$. First find $f_{\text {ave }}$ and the point c where $f(c)=f_{\text {ave }}$.

Hand In Next Class and WeBWorK Dayo8 (due Saturday night)

1. Do Lab 3, Problem 8(a). (Make use of Lab problem \#7.)
2. Use the FTC to find $F^{\prime}(x)$ if $F(x)=\int_{x^{4}}^{2} 8 \sin \left(\pi t^{2}\right) d t$. Note the limits!
3. Suppose that $\int_{1 / 2}^{x} g(t) d t=x^{2} \ln x$. Evaluate $g(1)$ and explain your answer. Hint: Apply FTC Part 1 . See Lab 3, problem 4(e).
4. (a) Breathing is cyclic. From the beginning of inhalation to the end of exhalation takes about 4 s . The flow rate of air into the lungs is modeled by $f(t)=\sin \left(\frac{\pi}{2} t\right)$ liters/s. Find the average flow rate on the interval $[2,4]$ seconds.
(b) Extra credit. The flow rate $f(t)$ is the rate of change in the volume $V(t)$ of air in the lungs. Find the net change in the volume of air in the lungs from time $t=2$ to $t=4$.
(c) What is going on physically during this period?
5. Let $f(t)$ be the function graphed below. FTC (Part 1) says that if $A(x)=\int_{-2}^{x} f(t) d t$, then $A^{\prime}(x)=f(x)$. But also remember $A(x)$ is just the net area between f and the x axis on the interval from -2 to endpoint x.

(a) At what point(s), if any, does A have a local max?
(b) On what interval(s) is A increasing? Explain briefly.
(c) Is $A(0)$ a positive number or negative? Explain.
(d) Define $B(x)=\int_{3}^{x} f(t) d t$. Is $B(0)$ a positive number or negative? Explain. Think about net area and the limits of the integral.
6. Read about definite integrals of odd and even functions (p. 377-78). Then do $\int_{-101}^{101} x^{9}-5 x^{3}-4 x d x$.
7. Page 382 \#40. First find $f_{\text {ave }}$ and then the point c where $f(c)=f_{\text {ave. }}$. Give both the exact value of c and a decimal approximation.
8. Determine $\frac{d}{d x}\left[\int_{1}^{x} \ln \left(t^{2}+1\right) d t+\int_{x}^{100} \ln \left(t^{2}+1\right) d t\right]$
