My Office Hours: M \& W 2:30-4:00, Tu 2:00-3:30, \& F 1:30-2:30 or by appointment. Math Intern: Sun: 2:00-5:00, 7:00-10pm; Mon thru Thu: 3:00-5:30 and 7:00-10:30pm in Lansing 310. Website: http://math.hws.edu/~mitchell/Math131F15/index.html.

Practice and Reading

1. (a) Reread and review Section 5.5 on substitution, which we will finish next class.
(b) \nrightarrow Practice substitution while things are still relatively simple! Page 391 \#9-23 odd, 27.

Hand In Next Class (Also WeBWorK Sets Substitution1 (Due Sunday) and Dayo9 (Due Tuesday))
Use this sheet. Be neat so that I can grade these quickly and get them back to you. Put a box around your answers so I can find them. Clearly note any substitution.
2. Determine $\int 3 x^{2}\left(x^{3}+9\right)^{-5} d x$.
3. Determine $\int \cos x \sqrt{4+2 \sin x} d x$.
4. Determine $\int \frac{(\ln t)^{3}}{t} d t$.
5. Determine $\int(x+2) \sin \left(x^{2}+4 x\right) d x$.
6. Determine $\int \frac{x^{5}}{1+4 x^{6}} d x$.
7. Fill in the blank with a function that makes this an easy problem and then solve it. $\int e^{x+\tan x}($ \qquad) $d x$.
8. Starting Integration Problems. Sometimes starting a problem is the hardest thing. Decide which method is appropriate for each: basic rules, algebraic simplification, "mental adjustment," still others require u substitution. Complete the table. You do not actually have to do the antidifferentiation.

Integral	Method	If u-sub, then $u=$? and $d u=$?
$\int(3 x+2)\left(6 x^{2}+8 x\right)^{5} d x$		
$\int(3 x+2)(6 x+8) d x$		
$\int \frac{1}{5 \sqrt[4]{x^{3}}} d x$		
$\int \sec ^{2}(3 x) d x$		
$\int \sin (\cos x) \sin x d x$		
$\int \frac{4}{1+x^{2}} d x$		
$\int \frac{4 x}{1+x^{2}} d x$		
$\int \frac{1+x^{2}}{x} d x$		
$\int \frac{t}{\sqrt{1-t^{2}}} d t$		
$\int \frac{1}{\sqrt{1-t^{2}}} d t$		

