21. Determine whether the series $\sum_{k=1}^{\infty} \frac{k^{2}}{2^{k}}$ converges.

Solution. (a) Use the Root Test. (b) The given series has powers and exponents. (c) The terms $a_{k}=\frac{k^{2}}{2^{k}}$ are positive. (d) Notice that

$$
r=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{2}}{2^{n}}}=\lim _{n \rightarrow \infty} \frac{\left(n^{2}\right)^{1 / n}}{2^{n / n}}=\lim _{n \rightarrow \infty} \frac{\left(n^{1 / n}\right)^{2}}{2} \stackrel{\text { Key Lim }}{=} \frac{1^{2}}{2}=\frac{1}{2}<1
$$

(e) Since $r<1$, the series converges by the Root Test.
28. Determine whether the series $\sum_{k=1}^{\infty} \frac{k^{2}+k-1}{k^{4}+4 k^{2}-3}$ converges.

Solution. (a) Use Limit Comparison. (b) The given series looks a lot like the p series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. (c) The terms $a_{n}=\frac{n^{2}+n-1}{n^{4}+4 n^{2}-3}$ and $b_{n}=\frac{1}{n^{2}}$ are always positive. (d) Notice that

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}+n-1}{n^{4}+4 n^{2}-3} \cdot \frac{n^{2}}{1}=\lim _{n \rightarrow \infty} \frac{n^{4}+n^{3}-n}{n^{4}+4 n^{2}-3}=\lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}-\frac{1}{n^{3}}}{1-\frac{4}{n^{2}}-\frac{3}{n}}=1
$$

(e) The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges $(p=2>1)$, and $0<L<\infty$, so so $\sum_{k=1}^{\infty} \frac{k^{2}+k-1}{k^{4}+4 k^{2}-3}$ converges by the Limit Comparison Test.
34. Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{3^{k}-2^{k}}$ converges.

Solution. (a) Use Limit Comparison. (b) The given series looks a lot like the geometric series $\sum_{k=1}^{\infty} \frac{1}{3^{k}}$. (c) The terms $a_{k}=\frac{1}{3^{k}-2^{k}}$ and $b_{n}=\frac{1}{3^{k}}$ are always positive. (d) Notice that

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1}{3^{n}-2^{n}} \cdot \frac{3^{n}}{1}=\lim _{n \rightarrow \infty} \frac{3^{n}}{3^{n}-2^{n}}=\lim _{n \rightarrow \infty} \frac{1}{1-\left(\frac{2}{3}^{n}\right.}=\frac{1}{1-0}=1
$$

(e) The geometric series $\operatorname{sum}_{k=1}^{\infty} \frac{1}{3^{k}}$ converges $\left(|r|=\frac{1}{3}<1\right)$, and $0<L<\infty$, so so $\sum_{k=1}^{\infty} \frac{1}{3^{k}-2^{k}}$ converges by the Limit Comparison Test.
38. Determine whether the series $\sum_{k=2}^{\infty} \frac{1}{(k \ln k)^{2}}$ converges.

Solution. (a) Use Limit Comparison. (b) The given series looks a lot like the geometric series $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$. (c) The terms $a_{k}=\frac{1}{(k \ln k)^{2}}$ and $b_{k}=\frac{1}{k^{2}}$ are always positive. (d) Notice that

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1}{(n \ln n)^{2}} \cdot \frac{n^{2}}{1}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2} \ln ^{2} n}=\lim _{n \rightarrow \infty} \frac{1}{\ln ^{2} n}=0
$$

(e) The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges $(p=2>1)$, and $L=0$, so $\sum_{k=1}^{\infty} \frac{1}{(k \ln k)^{2}}$ converges by the Limit Comparison Test.
65. Determine whether the series $\sum_{k=1}^{\infty} \tan \frac{1}{k}$ converges.

Solution. (a) Use Limit Comparison. (b) The given series looks a lot like the geometric series $\sum_{k=1}^{\infty} \frac{1}{k}$. (c) The terms $a_{k}=\tan \frac{1}{k}$ and $b_{k}=\frac{1}{k}$ are always positive. (d) Notice that
$L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\tan \frac{1}{n}}{\frac{1}{n}}=\lim _{x \rightarrow \infty} \frac{\tan \frac{1}{x}}{\frac{1}{x}} \stackrel{l^{\prime} \text { Ho }}{=} \lim _{x \rightarrow \infty} \frac{\sec ^{2}\left(\frac{1}{x}\right) \cdot \frac{-1}{x^{2}}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow \infty} \sec ^{2}\left(\frac{1}{x}\right)=\sec ^{2}(0)=1$.
(e) The p-series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges ($p=1 \leq 1$), and $0<L<\infty$, so $\sum_{k=1}^{\infty} \tan \frac{1}{k}$ diverges by the Limit Comparison Test.
12. Determine whether the series $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{\sqrt{k}}$ converges.

Solution. (a-b) Use Alternating Series test with $a_{k}=\frac{1}{\sqrt{k}}$ because the series is alternating. (c) The terms $a_{k}=\frac{1}{\sqrt{k}}$ are always positive. (d) Check the two conditions of the test.

1. Decreasing? Use the derivative. Let $f(x)=\frac{1}{\sqrt{x}}=x^{-1 / 2}$. Then $f^{\prime}(x)=-\frac{x^{-3 / 2}}{2}<0$ for x in $[1, \infty)$. So the function and corresponding sequence are decreasing.
2. $\lim _{k \rightarrow \infty} a_{k}=\lim _{k \rightarrow \infty} \frac{1}{\sqrt{k}}=0$.
(e) Since the series satisfies the two conditions, by the Alternating Series test, $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{\sqrt{k}}$ converges.
