
fall, 2015. math 131 (mitchell) calculus ii: day 38 1

My Office Hours: M & W 2:30–4:00, Tu 2:00–3:30, & F 1:30–2:30 or by appointment. Math

Intern: Sun: 2:00–5:00, 7:00–10pm; Mon thru Thu: 3:00–5:30 and 7:00–10:30pm in Lansing 310.

Website: http://math.hws.edu/~mitchell/Math131F15/index.html.

K Practice. Review Section 8.6 on Alternating Series 649–652 and Absolute/Conditional
Convergence. Skip the subsection on remainders. But do read pages 654–655 on Ab-
solute Convergence. See the nice summary chart on page 656.

1. (a) Comparison and Limit Comparison Tests. Page 648 #27, 29, 33, 35 and 44. For #44 use the comparison test. What
do you know about the size of sin2 k?

(b) Alternating Series Test. Page 657 #11, 13, 15, 19, and 21.

(c) If we get this far: Absolute and Conditional Convergence. Page 657 #45, 47, 49.

The More Recent Tests
1. Limit Comparison Test. Assume that an > 0 and bn > 0 for all n (or at least all

n ≥ k) and that lim
n→∞

an

bn
= L.

(1) If 0 < L < ∞ (i.e., L is a positive, finite number), then either
∞

∑
n=1

an and
∞

∑
n=1

bn

both converge or both diverge.

(2) If L = 0 and
∞

∑
n=1

bn converges, then
∞

∑
n=1

an converges.

(3) If L = ∞ and
∞

∑
n=1

bn diverges, then
∞

∑
n=1

an diverges.

2. Direct Comparison Test. Assume ∑∞
n=1 an and ∑∞

n=1 bn are series with positive
terms.

(a) If 0 < an ≤ bn and ∑∞
n=1 bn converges, then ∑∞

n=1 an converges. If the bigger series converges, so does
the smaller series.

(b) If 0 < bn ≤ an and ∑∞
n=1 bn diverges, then ∑∞

n=1 an diverges. If the smaller series diverges, so does
the bigger series.

3. The Alternating Series Test. Assume an > 0. The alternating series
∞

∑
n=1

(−1)nan

converges if the following two conditions hold:

(a) The terms an are (eventually) decreasing (non-increasing), that is, an+1 ≤ an for
all n (or for all n > N).

(b) lim
n→∞

an = 0

4. Absolute Convergence Test. If the series
∞

∑
n=1
|an| converges, then so does the

series
∞

∑
n=1

an.

Hand In At Lab—Be Neat and Careful. Use the Model Methods.

Model 1: Determine whether the series
∞

∑
n=1

2
n− 1

2
converges or diverges.

Solution. This problem is easiest with the Limit Comparison Test. (See the hand-
out from last time.) But here’s how to (a) Use the Direct Comparison Test. (b) The
given series looks a lot like the p-series ∑∞

n=1
1
n (which diverges by the p-series test).

So we think that ∑∞
n=1

2
n− 1

2
diverges. (c–d) So in the Direct Comparison Test we

these terms to be LARGER than the comparison series. Notice that n − 1
2 < n so

taking reciprocals changes the direction of the inequality and we have

1
n− 1

2
>

1
n

so that
2

n− 1
2
>

2
n
≥ 0.
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(e) Since ∑∞
n=1

2
n diverges (p-series test, p = 1 ≤ 1), it follows that ∑∞

n=1
2

n− 1
2

diverges

by the Direct Comparison Test.

Model 2: Determine whether the series
∞

∑
n=1

cos2(n)
n2 + 6n

converges.

Solution. (a) Use Direct Comparison. (b) The given series looks a lot like the p-

series ∑∞
n=1

1
n2 . (c) The terms an = cos2(n)

n2+6n and bn = 1
n2 are always positive. (d) Notice

that 0 < cos2(n)
n2+6n < 1

n2 because cos2 < 1 and the denominator n2 + 6n > n2. (e)

The p-series ∑∞
n=1

1
n2 converges (p = 2 > 1), so

∞

∑
n=1

cos2(n)
n2 + 6n

is SMALLER than the

convergent series ∑∞
n=1

1
n2 , so it also converges by the Comparison Test. ZLimit Comparison is not possible

because cos2(n) does not have a limit.

Model 3: Determine whether the series
∞

∑
n=1

(−1)nn
n2 + 6n

converges.

Solution. (a–b) Use the Alternating Series test since the series is alternating. (c)
Here an = n

n2+6n . Check the two conditions.

(1) Decreasing? Let f (x) = x
x2+6x . Then f ′(x) = x2+6x−x(2x+6)

(x2+6x)2 = x2+6x−2x2−6x
(x2+6x)2 =

−x2

(x2+6x)2 < 0, so the function and the sequence are decreasing.

(2) And limn→∞ an = limn→∞
n

n2+6n = limn→∞
1
n

1+ 6
n
= 0.

(e) By the Alternating Series Test, ∑∞
n=1

(−1)nn
n2+6n converges.

Model 4: Determine whether the series
∞

∑
n=1

(−1)n+1n3 + 2n
n3 converges.

Solution. (a–b) Use the Alternating Series test since the series is alternating. (c)
Here an = n3+2n

n3 . Check the two conditions.

(1) Decreasing? Dividing by n3, we see an = n3+2n
n3 = 1 + 2

n2 . These terms decrease
as n gets larger:

0 ≤ 1 + 2
(n+1)2 < 1 + 2

n2 so an1 < an.

(2) But limn→∞ an = limn→∞
n3+2n

n3 = 1 + 2
n2 = 1.

(e) The Alternating Series Test does not apply. BUT since limn→∞ an 6= 0, the
Divergence Test shows that the series diverges.

1. Using the approach above, do page 648 #42 and 44.

2. Using the approach above, do page 657 in the following order #16, 14. Optional
XC: #18.

3. Optional XC: Determine where the following argument is wrong. Does
∞

∑
n=1

2
n2 + n

converge or diverge?

Solution. (a-b) Looks like
∞

∑
n=1

2
n

. Use the Direct Comparison Test. (c) Both series

have positive terms. (d) Since n2 + n > n, taking reciprocals changes the direction of
the inequality and we have

0 < 1
n2+n < 1

n so 0 < 2
n2+n < 2

n .

(e) Since ∑∞
n=1

2
n diverges by the p-series test (p = 1), then ∑∞

n=1
2

n2+n diverges by the
Direct Comparison Test.
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Series Strategy

By the time we finish with series we will have 10 different tests for for convergence
and divergence. We need a strategy when we approach a new problem. Here’s the
method I use:

Start with the easy tests first, which you should be able to do in your head:

(a) Does limn→∞ an 6= 0? If so, the divergence test says the series diverges. Other-
wise do more work (most cases).

(b) Is it a p-series or geometric series? Does it look like ∑ 1
kp or ∑ crk?

1. Next: Are there factorials and/or powers. Try the ratio and root tests.

2. As k → ∞ is it “roughly" a p-series or geometric series? Try the limit comparison
or the direct comparison tests.

3. Is it alternating? ∑(−1)nan. Try the alternating series test.

4. Can you integrate it? Try the integral test. [Lots of work.]

5. Give your strategy for each series and whether you think it converges.

(a)
∞

∑
n=1

1
5
√

n3 + n

(b)
∞

∑
n=1

5n+1

n!

(c)
∞

∑
n=1

5
5√n6

(d)
∞

∑
n=1

2n
(n + 1)3n

(e)
∞

∑
n=1

(
2n8 + 1
9n8 + n

)2n

(f )
∞

∑
n=1

2 · n!
nn

(g)
∞

∑
n=1

2n12 + 9n
7n15 + 16n2

(h)
∞

∑
n=1

e
(π

e

)2n

(i)
∞

∑
n=1

tan
(

1
n

)
(j)

∞

∑
n=1

nn

10002n

(k)
∞

∑
n=1

(
2
n
+

1
4n

)
(l)

∞

∑
n=1

(−1)n
(

2
n
+

1
4n

)

(m)
∞

∑
n=1

(
2
n
+

1
4n

)3n

(n)
∞

∑
n=1

(
n

n + 1

)n2

(o)
∞

∑
n=1

sec
(

1
n3

)


