Math 131 Lab 1

1. 2-minute Review. These should be quick. Remember you can always check that an antiderivative is correct by taking its derivative.

a)
$$\int 2 + 6x - 9x^3 dx$$
 b) $\int 4x^{-1} - e^{3x} dx$ c) $\int \frac{\cos x}{2} dx$ d) $\int c dx$ e) $\int \sqrt[3]{x} dx$

b)
$$\int 4x^{-1} - e^{3x} dx$$

$$\mathbf{c)} \int \frac{\cos x}{2} \, dx$$

$$\mathbf{d)} \quad \int c \, dx$$

$$\mathbf{e)} \quad \int \sqrt[3]{x} \, dx$$

2. Evaluate these limits (use L'Hopital's Rule, if appropriate). First classify the indeterminate type of each, e.g., $\frac{0}{0}$, $\frac{\infty}{\infty}$,

a)
$$\lim_{x\to 0} \frac{\arctan 4x}{\sin 2x}$$

a)
$$\lim_{x \to 0} \frac{\arctan 4x}{\sin 2x}$$
 b) $\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$ c) $\lim_{x \to 0^+} x \ln x$ d) $\lim_{x \to \infty} \frac{x \ln x}{x^2 + 1}$ e) $\lim_{x \to 0} \frac{2^x - 4^x}{x + 5x^2}$

c)
$$\lim_{x \to a^{+}} x \ln x$$

d)
$$\lim_{x \to \infty} \frac{x \ln x}{x^2 + 1}$$

e)
$$\lim_{x\to 0} \frac{2^x - 4^x}{x + 5x^2}$$

3. Sigma Notation. Recall from class yesterday how sigma notation is used:

Sum ends with i = n

Sigma tells us to sum. $\rightarrow \sum_{i=m}^{\downarrow} a_i \leftarrow \text{formula to sum. Often}$ Example: $\sum_{i=1}^{5} 2i = 2(1) + 2(2) + 2(3) + 2(4) + 2(5) = 30$.

Sum starts with i = m

Translate each of the following as in the example above:

a)
$$\sum_{i=1}^{4} i^{2}$$

a)
$$\sum_{i=1}^{4} i^2$$
 b) $\sum_{i=2}^{5} \cos(j\pi x)$ c) $\sum_{i=0}^{3} j^3 + 2j$

c)
$$\sum_{j=0}^{3} j^3 + 2j$$

Now write each of the following sums using sigma notation.

d)
$$4+6+8+10+12$$

e)
$$3+9+27+81+243$$

$$\mathbf{f)} \ \ -1+1-1+1-1+1$$

d)
$$4+6+8+10+12$$
 e) $3+9+27+81+243$ f) $-1+1-1+1-1+1$ g) $0+1+\sqrt{2}+\sqrt{3}+\cdots+\sqrt{n}$

4. Use summation properties and formulæ (see Theorem 5.1, p 340) to evaluate the following general sums. Your answer will be in terms of n. Simplify all answers.

a)
$$\sum_{i=1}^{n} \frac{i^2+1}{n^3}$$

a)
$$\sum_{i=1}^{n} \frac{i^2 + 1}{n^3}$$
 b) $\sum_{i=1}^{n} \left(10 - \frac{i}{n}\right) \left(\frac{1}{n}\right)$

5. Evaluate the following limits using your answers to above. [Do not redo the work above; use your simplification.] Use

a)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i^2 + 1}{n^3}$$

a)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i^2 + 1}{n^3}$$
 b) $\lim_{n \to \infty} \sum_{i=1}^{n} \left(10 - \frac{i}{n}\right) \left(\frac{1}{n}\right)$

- **6. a)** Find the **derivative** of $y = x \ln x x$.
 - **b)** Determine $\int \ln x \, dx$. Hint: Look up.
- 7. Find the general antiderivatives of these somewhat more interesting functions. Remember you can check your answers by differentiating. For (e), divide first. Remember +c.

1

a)
$$\int 6x^{-1/2} - 4\sec^2 x \, dx$$

$$\mathbf{b)} \quad \int \sqrt[5]{x^2} \, dx$$

$$\mathbf{c)} \int \frac{4}{7\sqrt[3]{x^4}} \, dx$$

$$\mathbf{d)} \quad \int \sin 2x \, dx$$

a)
$$\int 6x^{-1/2} - 4\sec^2 x \, dx$$
 b) $\int \sqrt[5]{x^2} \, dx$ c) $\int \frac{4}{7\sqrt[3]{x^4}} \, dx$ d) $\int \sin 2x \, dx$ e) $\int \frac{9x^3 - 2x + x^{1/2}}{x^2} \, dx$ f) $\int \frac{5}{\sqrt{1 - x^2}} \, dx$ g) $\int \sec(3x) \tan(3x) \, dx$ h) $\int \cos^2 x + \sin^2 x \, dx$

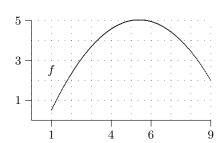
$$f(x) = \int \frac{5}{\sqrt{1-x^2}} \, dx$$

$$\mathbf{g)} \quad \int \sec(3x)\tan(3x) \, dx$$

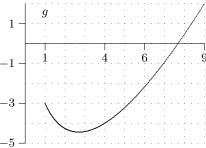
$$\mathbf{h)} \int \cos^2 x + \sin^2 x \, dx$$

EZ!

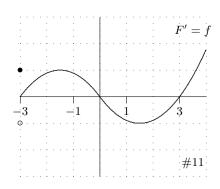
8. a) From Calculus I, the Extreme Value Theorem says that any continuous function on a closed interval [a, b] has both maximum and a minimum value on the interval. The two graphs below are both continuous. For each of the closed subintervals listed, estimate the max and min values of the functions f and g.

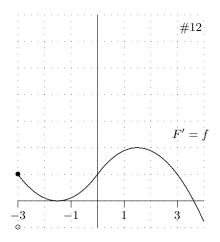


Interval	[1, 4]	[4, 6]	[6, 9]
$\mathbf{Max}\ f$			
$\min f$			
Max g			
$\min g$			



- b) For the function f, draw the three rectangles whose bases are the intervals along the x-axis and whose heights are the min values of f on each interval. What is the sum of their areas? Is this sum an over or underestimate the area under the curve? Why?
- c) For the function g, draw the three rectangles whose bases are the intervals along the x-axis and whose heights are the MAX values of g on each interval. What is the sum of their areas? Over or underestimate? Why?
- **9.** Determine the particular function f(x) such that $f'(x) = 6x^2 + 1$ and f(1) = 4. First find the general antiderivative, then evaluate c by using the given value. There should be no unknown constant term "c" in your final answer.
- 10. Suppose that $f''(x) = 2\cos x$. If f'(0) = 1 and f(0) = 2, what is the function f(x)? Hint: Do antidifferentiation twice
- 11. Sometimes when we have no formula for a function we are forced to do graphical antidifferentiation. Let F(x) be the antiderivative of f(x) on [-3, 4], where f is the function graphed on the *left* below. Since F is an antiderivative of f, then F' = f. Use this relationship to answer the following questions.
 - a) Where is F' positive? Negative? Use F' to determine the interval(s) where F increasing. Decreasing.
 - **b)** At what point(s), if any, does F have a local max? Min?
 - c) Determine where F'' is positive and negative. On what interval(s) is F concave up? Down?
 - \mathbf{d}) Does F have any points of inflection?
 - e) Assume F passes through the point (-3,1) indicated with a \bullet ; draw a potential graph of F.
 - f) Assume, instead, that F passes through (-3, -1) indicated by a \circ ; draw a graph of F.
 - g) What is the relationship between the two graphs you've drawn?





- 12. If time allows: Repeat Problem 11 for the graph on the right above.
- 13. A sea otter ingests a pollutant and immediately begins to excrete it at a rate of

$$\frac{dA}{dt} = \frac{k}{1+t^2},$$

where A(t) is the amount of the pollutant (in mg) remaining after t days and k is an unknown constant. If the initial amount of the pollutant ingested is A(0) = 20 mg and a day later there is A(1) = 15 mg left, find the function A(t). How much of the pollutant remains after 5 days?

Answers to Math 131 Lab 1

Extra credit if you find a typo. E-mail me.

1. The antiderivatives are:

a)
$$2x + 3x^2 - \frac{9}{4}x^4 + c$$
 b) $4\ln|x| - \frac{1}{3}e^{3x} + c$ c) $\frac{1}{2}\sin x + c$ d) $cx + d$ e) $\frac{3}{4}x^{4/3} + c$

b)
$$4 \ln |x| - \frac{1}{3}e^{3x} + c$$

c)
$$\frac{1}{2}\sin x + e^{-x}$$

d)
$$cx + a$$

e)
$$\frac{3}{4}x^{4/3} + \epsilon$$

2. a) Form $\frac{0}{0}$: $\lim_{x \to 0} \frac{\arctan 4x}{\sin 2x} \stackrel{\text{l'Ho}}{=} \lim_{x \to 0} \frac{\frac{4}{1 + 16x^2}}{2\cos 2x} = \frac{\frac{4}{1}}{2} = 2.$ **b)** Form $\frac{0}{0}$: $\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} \stackrel{\text{l'Ho}}{=} \lim_{x \to 0} \frac{e^x - 1}{2x} \stackrel{\text{l'Ho}}{=} \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2}.$

b) Form
$$\frac{0}{0}$$
: $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2} \stackrel{\text{l'Ho}}{=} \lim_{x\to 0} \frac{e^x - 1}{2x} \stackrel{\text{l'Ho}}{=} \lim_{x\to 0} \frac{e^x}{2} = \frac{1}{2}$.

$$\mathbf{c)} \ \ \text{Form} \ \ 0 \cdot \infty \colon \lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} \stackrel{\text{l'Ho}}{=} \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} -\frac{x^2}{x} = \lim_{x \to 0^+} -x = 0.$$

d) Form
$$\underset{\infty}{\underline{\infty}}$$
: $\lim_{x \to \infty} \frac{x \ln x}{x^2 + 1} \stackrel{\text{l'Ho}}{=} \lim_{x \to \infty} \frac{1 + \ln x}{2x} \stackrel{\text{l'Ho}}{=} \lim_{x \to \infty} \frac{\frac{1}{x}}{2} = \frac{0}{2} = 0$

d) Form
$$\stackrel{\infty}{\infty}$$
: $\lim_{x \to \infty} \frac{x \ln x}{x^2 + 1} \stackrel{\text{l'Ho}}{=} \lim_{x \to \infty} \frac{1 + \ln x}{2x} \stackrel{\text{l'Ho}}{=} \lim_{x \to \infty} \frac{\frac{1}{2}}{2} = \frac{0}{2} = 0.$

e) $\frac{0}{0}$. $\lim_{x \to 0} \frac{2^x - 4^x}{x + 5x^2} \stackrel{\text{l'Ho}}{=} \lim_{x \to 0} \frac{2^x \ln 2 - 4^x \ln 4}{1 + 10x} = \ln 2 - \ln 4 = \ln \frac{2}{4} = -\ln 2.$

3. a) $\sum_{i=1}^{4} i^2 = 1 + 4 + 9 + 16 = 30$ b) $\sum_{j=3}^{5} \cos(j\pi x) = \cos(3\pi x) + \cos(4\pi x) + \cos(5\pi x)$

3. a)
$$\sum_{i=1}^{4} i^2 = 1 + 4 + 9 + 16 = 30$$

b)
$$\sum_{j=3}^{5} \cos(j\pi x) = \cos(3\pi x) + \cos(4\pi x) + \cos(5\pi x)$$

c)
$$\sum_{j=0}^{3} j^3 + 2j = 0 + 3 + 12 + 33 = 38$$
 d) $\sum_{j=0}^{6} 2j$ e) $\sum_{j=1}^{5} 3^j$ f) $\sum_{j=1}^{6} (-1)^j$ g) $\sum_{j=0}^{20} \sqrt{j}$

d)
$$\sum_{j=2}^{6} 2j$$

e)
$$\sum_{j=1}^{5} 3^{j}$$

$$\mathbf{f}$$
) $\sum_{i=1}^{6} (-1)^{i}$

g)
$$\sum_{j=0}^{20} \sqrt{j}$$

4. a)
$$\sum_{i=1}^{n} \frac{i^2+1}{n^3} = \frac{1}{n^3} \sum_{i=1}^{n} i^2 + \frac{1}{n^3} \sum_{i=1}^{n} 1 = \frac{n(n+1)(2n+1)}{6n^3} + \frac{n}{n^3} = \frac{2n^2+3n+1}{6n^2} + \frac{1}{n^2} = \frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2} + \frac{1}{n^2}$$

b)
$$\sum_{i=1}^{n} \left(10 - \frac{i}{n} \right) \left(\frac{1}{n} \right) = \frac{10}{n} \sum_{i=1}^{n} 1 - \frac{1}{n^2} \sum_{i=1}^{n} i = \frac{10n}{n} - \frac{n(n+1)}{2n^2} = 10 - \frac{n+1}{2n} = 10 - \frac{1}{2} - \frac{1}{2n} = 9.5 - \frac{1}{2n}.$$

5. a)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i^2 + 1}{n^3} = \lim_{n \to \infty} \frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2} + \frac{1}{n^2} = \frac{1}{3} + 0 + 0 + 0 = \frac{1}{3}$$

b)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \left(10 - \frac{i}{n} \right) \left(\frac{1}{n} \right) = \lim_{n \to \infty} 9.5 - \frac{1}{2n} = 9.5 - 0 = 9.5$$

6. a) Product rule: $y' = 1 \cdot \ln x + x \cdot \frac{1}{x} - 1 = \ln x$. **b)** Looking at part (a): $\int \ln x \, dx = x \ln x - x + c$.

7. The antiderivatives are:

a)
$$12x^{1/2} - 4\tan x + c$$

b) =
$$\int x^{2/5} dx = \frac{5}{7}x^{7/5} + c$$

a)
$$12x^{1/2} - 4\tan x + c$$
 b) $= \int x^{2/5} dx = \frac{5}{7}x^{7/5} + c$ c) $= \int \frac{4}{7}x^{-4/3} dx = -\frac{12}{7}x^{-1/3} + c$

$$\mathbf{d)} \ -\frac{\cos(2x)}{2} + c$$

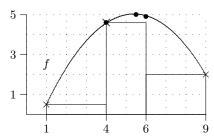
d)
$$-\frac{\cos(2x)}{2} + c$$
 e) $\int 9x - 2x^{-1} + x^{-3/2} dx = \frac{9}{2}x^2 - 2\ln|x| - 2x^{-1/2} + c$ f) $5 \arcsin x + c$

$$\mathbf{f)} \ 5\arcsin x + c$$

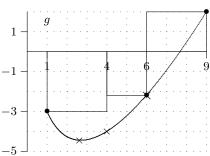
$$\mathbf{g)} \ \frac{\sec(3x)}{3} + c$$

g)
$$\frac{\sec(3x)}{2} + c$$
 h) $x + c$. Remember $\cos^2 x + \sin^2 x = 1$

8. a) Maxs are denoted with • and mins with ×. Why are some points marked as both a max and a min?



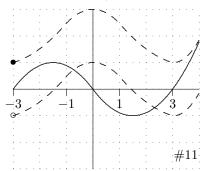
Interval	[1, 4]	[4, 6]	[6, 9]
$\mathbf{Max} \ f$	4.6	5	4.8
$\min f$	0.5	4.5	2
$\mathbf{Max} \ g$	-3	-2.2	2
min g	-4.4	-4	-2.2



b) Area sum: $3 \times 0.5 + 2 \times 4.5 + 3 \times 2 = 16.5$. Underestimate. The rectangles are below the curve.

c) Area sum: $3 \times (-3) + 2 \times (-2.2) + 3 \times 2 = 16.5 - 7.4$. Overestimate. The rectangles are always above the curve.

- **9.** If $f'(x) = 6x^2 + 1$, then $f(x) = 2x^3 + x + c$. But $f(1) = 4 = 2 + 1 + c \Rightarrow c = 1$. So $f(x) = 2x^3 + x + 1$.
- **10.** If $f''(x) = 2\cos x$, then $f'(x) = \int 2\cos x \, dx = 2\sin x + c$. But $f'(0) = 2(0) + c = 1 \Rightarrow c = 1$. So $f'(x) = 2\sin x + 1$ so $f(x) = -2\cos x + x + c$. But f(0) = -2 + 0 + c = 2, so c = 4. Now $f(x) = -2\cos x + x + 4$.
- **11. a)** Use that F' = f and F'' = f'. F increasing means F' = f > 0: on (-3,0) and (3,4). F decreasing means F' = f < 0: on (0,3).
 - b) F has a local max means F' = f changes from + to -: at x = 0. F has a local min means F' = f changes from to +: at x = 3.
 - c) F concave up means F'' = f' > 0, i.e., f is increasing: (-3, -1.5) and (1.5, 4). F concave down means F'' = f' < 0, i.e., f is decreasing: (-1.5, 1.5).
 - d) F has a points of inflection when F'' = f' changes sign, i.e., when f changes from increasing to decreasing or *vice versa*: at $x = \pm 1.5$.
 - g) The two graphs are parallel (differ only by a constant).



- 12. This is a HW problem.
- **13.** Given $\frac{dA}{dt} = \frac{k}{1+t^2}$, A(0) = 20, and A(1) = 15. So

$$A(t) = \int A'(t) dt = \int \frac{k}{1+t^2} dt = k \arctan(t) + c.$$

A(0) = 20 = 0 + c, so c = 20. Therefore, $A(t) = k \arctan(t) + 20$. Then

$$A(1) = 15 = k \arctan(1) + 20 = \frac{k\pi}{4} + 20 \rightarrow -5 = \frac{k\pi}{4} \rightarrow k = -\frac{20}{\pi}.$$

Therefore, $A(t) = -\frac{20}{\pi} \arctan t + 20$, so $A(5) = -\frac{20}{\pi} \arctan(5) + 20 \approx 11.26$ mg.