Math 131, Lab 13

 ∞

Make sure to get your answers checked by a TA or me as you go along.

1. Go through this list of series and use a strategy to decide which test is appropriate to determine whether the series converges. In most cases you should be able to "predict" or outline whether the series converges.

a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2 + 4n}}$$

b)
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{(2n)!}$$

c)
$$\sum_{n=1}^{\infty} \frac{3n}{(n+1)2^n}$$

d)
$$\sum_{n=1}^{\infty} \left(\frac{4n^3 + 1}{7n^3 + n}\right)^{2n}$$

e)
$$\sum_{n=1}^{\infty} \frac{2 \cdot n!}{n^n}$$

f)
$$\sum_{n=1}^{\infty} \pi \left(\frac{e}{\pi}\right)^{\pi n}$$

g)
$$\sum_{n=1}^{\infty} \tan \frac{1}{n^3}$$

h)
$$\sum_{n=1}^{\infty} \frac{12n^{34} + 9n^9}{10n^{35} + n + 1}$$

j)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} + \frac{1}{2^n}\right)$$

k)
$$\sum_{n=1}^{\infty} [\ln(3n + 5) - \ln(2n + 4)]$$

l)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{n} + \frac{1}{2^n}\right)$$

m)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} + \frac{1}{2^n}\right)^{3n}$$

n)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{2n^2}$$

2. Determine whether these alternating series converge. Justify your answers with a complete argument.

a)
$$\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n}$$
 b) $\sum_{n=1}^{\infty} \frac{(-1)^n (2n+1)}{3n+2}$ c) $\sum_{n=3}^{\infty} \frac{(-1)^n \ln n}{n}$ d) $\sum_{n=1}^{\infty} \frac{3(-1)^n}{n^2 + 5n + 4}$

- 3. How return to Problem 1 and do these parts in the order given: (a), (j), (i), (g), (m), (b), (k). Justify your answers with a complete argument.
- 4. Determine whether these series converge. Justify your answers with a complete argument.

a) Does
$$\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n^6 + 1}}$$
 converge?
b) Does $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{\sqrt{n^6 + 1}}$ converge?

		iU (s	(į	Di	(i	iU (i	oD (n	oD (d	к) Di		
.6	y trong	answer									
		о) (в	q	iU ()	o) (o	oD (b				
5.	y trode	answer									
		т) Кс	tsA∖₀	(u	оя (007					
		g) LC		(ч	оЯ ($f_{\rm B} = 1000$	i) LC	(f) DC	k) Div	TSA (I
		ол (в		(q	вЯ (te	sA\DJ (5	b t	ооЯ (b	tsA (9	tsA\ooA\o9D (1
т. ;	y trout	Answer									

Lab 13 Answers

1. a) (a) Apply the Limit Comparison. (b) Similar to $\sum \frac{1}{n^{2/3}}$. (c) $\frac{1}{\sqrt[3]{n^2+4n}}$ and $\frac{1}{n^{2/3}}$ are always positive. (d)

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{\sqrt[3]{n^2 + 4n}} \cdot \frac{n^{2/3}}{1} \stackrel{\text{HPwrs}}{=} \lim_{n \to \infty} \frac{n^{2/3}}{\sqrt[3]{n^2}} = 1 > 0.$$

(e) Since $0 < L = 1 < \infty$ and since $\sum_{n=1}^{\infty} \frac{1}{n^{2/3}}$ diverges by the *p*-series test $(p = \frac{2}{3} \le 1)$, then $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2 + 4n}}$ diverges by the limit comparison test.

b) (a) Ratio test. (b) Factorials. (c) The terms $\frac{2^{n+1}}{(2n)!}$ are positive. (d)

$$r = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{2^{n+2}}{(2n+2)!} \cdot \frac{(2n)!}{2^{n+1}} = \lim_{n \to \infty} \frac{2}{(2n+1)(2n+2)} = 0 < 1$$

- (e) Since r < 1, by the ratio test the series converges.
- c) (a) Apply the Limit Comparison test. (b) Notice (HP) $\sum \frac{3n}{(n+1)2^n} \approx \sum \frac{3}{2^n}$. So compare to the geometric series $\sum \frac{1}{2^n}$. (c) $\frac{3n}{(n+1)2^n}$ and $\frac{1}{2^n}$ are both positive. (d) So

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{3n}{(n+1)2^n} \cdot \frac{2^n}{1} = \lim_{n \to \infty} \frac{3n}{n+1} \stackrel{\mathrm{HPwrs}}{=} \lim_{n \to \infty} \frac{3n}{n} = 3 > 0.$$

(e) Since $0 < L = 3 < \infty$ and since $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converges by the geometric series test $(|r| = \frac{1}{2} < 1)$, then $\sum_{n=1}^{\infty} \frac{3n}{(n+1)2^n}$ converges by the limit comparison test. OR: (a-b) Ratio test, because there are *n*th powers. (c) The terms are positive. (d)

$$r = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3(n+1)}{(n+2)2^{n+1}} \cdot \frac{(n+1)2^n}{3n} = \lim_{n \to \infty} \frac{(n+1)}{(n+2)2} \cdot \frac{(n+1)}{n} = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{2n^2 + 2n} \stackrel{\text{HP}}{=} \frac{1}{2} < 1.$$

(e) Since r < 1 by the ratio test the series converges.

d) (a) Root test (b) because there are powers. (c) The terms $\left(\frac{4n^3+1}{7n^3+n}\right)^{2n}$ are positive. (d)

$$r = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left[\left(\frac{4n^3 + 1}{7n^3 + n} \right)^{2n} \right]^{1/n} = \lim_{n \to \infty} \left(\frac{4n^3 + 1}{7n^3 + n} \right)^2 \stackrel{\text{HP}}{=} \left(\frac{4}{7} \right)^2 < 1$$

(e) Since r < 1 by the root test the series converges.

- e) (a) Ratio test (b) because of the factorial. (c) The terms are positive. (d) $r = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^{n+1}}{2 \cdot (n+1)!} \cdot \frac{2 \cdot n!}{n^n} = \lim_{n \to \infty} \frac{(n+1)^{n+1}}{(n+1)n^n} = \lim_{n \to \infty} \frac{(n+1)^n}{n^n} = \lim_{n \to \infty} \left(\frac{n+1}{n}\right)^n = \lim_{n \to \infty} \left(\frac{1+\frac{1}{n}}{1}\right)^n = \frac{e}{1} > 1.$ (e) Since r > 1 by the ratio test the series diverges.
- f) (a) Geometric series test. (b) We can rewrite it as the geometric series $\sum_{n=1}^{\infty} \pi \left[\left(\frac{e}{\pi} \right)^{\pi} \right]^n$. (d) $|r| = \left(\frac{e}{\pi} \right)^{\pi} < 1$ Since |r| < 1, the geometric series test says the series converges.
- g) (a) Limit comparison test. (b) Looks like the *p*-series $\sum \frac{1}{n^3}$. (c) The terms are positive because $0 < \frac{1}{n^3} < 1 < \pi/2$, so $\tan \frac{1}{n^3} > 0$.

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\tan \frac{1}{n^3}}{\frac{1}{n^3}} = \lim_{x \to \infty} \frac{\tan \frac{1}{x^3}}{\frac{1}{x^3}} \stackrel{\text{l'Ho}}{=} \lim_{x \to \infty} \frac{\sec^2(\frac{1}{x^3})(-\frac{3}{x^4})}{-\frac{3}{x^4}} = \lim_{x \to \infty} \sec^2 \frac{1}{x^3} = \sec^2 0 = 1.$$

Since $0 < L = 1 < \infty$ and since $\sum \frac{1}{n^3}$ converges by the *p*-series test (p = 3 > 1), then $\sum \tan \frac{1}{n^3}$ converges by the limit comparison test.

h) (a-b) Use the root test because of the powers. (c) The terms $\frac{n^n}{2^n \cdot 1000^{2n}}$ are positive. (d)

$$r = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left[\frac{n^n}{2^n \cdot 1000^{2n}} \right]^{1/n} = \lim_{n \to \infty} \left(\frac{n}{2 \cdot 1000^2} \right) = \infty > 1$$

(e) Since r > 1 by the root test the series diverges.

i) (a) Limit comparison test. (b) Looks like the *p*-series $\sum \frac{1}{n}$. (c) The terms of both series are clearly positive.

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{12n^{34} + 9n^9}{10n^{35} + n + 1} \cdot \frac{n}{1} = \lim_{n \to \infty} \frac{12n^{35} + 9n^{10}}{10n^{35} + n + 1} \stackrel{\text{HPwrs}}{=} = \lim_{n \to \infty} \frac{12n^{35}}{10n^{35}} = \frac{12}{10}.$$

Since $0 < L = \frac{12}{10} < \infty$ and since $\sum \frac{1}{n}$ diverges by the *p*-series test $(p = 1 \le 1)$, then $\sum_{n=1}^{\infty} \frac{12n^{34}+9n^9}{10n^{35}+n+1}$ diverges by the limit comparison test.

- **j)** (a) Direct comparison with $\sum \frac{1}{n}$. (b) Notice that the terms are larger than those in $\sum \frac{1}{n}$, so we expect the series to diverge. (c-d) Specifically $0 < \frac{1}{n} < \frac{1}{n} + \frac{1}{2^n}$. (e) Since $\sum \frac{1}{n}$ diverges (*p*-series, p = 1), then by direct comparison, the LARGER series $\sum_{n=1}^{\infty} \left(\frac{1}{n} + \frac{1}{2^n}\right)$ also converges.
- **k)** (a-c) Divergence Test: the *n*th term does not go to 0. (d) $\lim_{n \to \infty} [\ln(3n+5) \ln(2n+4)] = \lim_{n \to \infty} \ln\left(\frac{3n+5}{2n+4}\right) \stackrel{\text{HP}}{=} \ln\left(\frac{3n}{2n}\right) = \ln\frac{3}{2} \neq 0.$ (e) By the Divergence Test, the series diverges.
- 1) (a-c) Use the alternating series test with $a_n = \frac{1}{n} + \frac{1}{2^n} > 0$ (positive terms). (d) Check the two conditions: (i): $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} + \frac{1}{2^n} \stackrel{\text{KeyLim}}{=} 0 + 0 = 0.\checkmark$ (ii): Decreasing? As *n* increases, the numerators are constant and the denominators increase, so the terms are decreasing. [Or take the derivative $f(x) = \frac{1}{x} + (\frac{1}{2})^x = x^{-1} + (\frac{1}{2})^x$ so $f'(x) = -x^{-2} + \ln(\frac{1}{2})(\frac{1}{2})^x < 0\checkmark$ ($x \ge 1$) (Remember $\ln(\frac{1}{2}) < 0$.) So f(x) and a_n are decreasing.] (e) By the Alternating Series Test the series converges.
- m) (a-b) Root test because of the powers. (c) The terms are positive $\left(\frac{1}{n} + \frac{1}{2^n}\right)^{3n}$ are positive. (d) So

$$r = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left[\left(\frac{1}{n} + \frac{1}{2^n}\right)^{3n} \right]^{1/n} = \lim_{n \to \infty} \left(\frac{1}{n} + \frac{1}{2^n}\right)^3 \stackrel{\text{KeyLim}}{=} (0+0)^3 = 0 < 1.$$

(e) Since r < 1 by the root test the series converges.

n) (a-b) Root test because of the powers. (c) The terms are positive $\left(\frac{n}{n+1}\right)^{2n^2}$ are positive. (d) So

$$r = \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left[\left(\frac{n}{n+1}\right)^{2n^2} \right]^{1/n} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^{2n} = \lim_{n \to \infty} \left[\left(\frac{1}{1+1/n}\right)^n \right]^2 \stackrel{\text{Keylim}}{=} \left(\frac{1}{e}\right)^2 < 1$$

- (e) Since r < 1 by the root test the series converges.
- 2. a) (a) The series is alternating. (b–c) Use the alternating series test with $a_n = \frac{1}{\sqrt[5]{n^2}}$. Check the two conditions.
 - 1. $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{\sqrt[5]{n^2}} = 0.\checkmark$
 - 2. Decreasing? Is $a_{n+1} \leq a_n$? Because $\sqrt[5]{(n+1)^2} \geq \sqrt[5]{n^2}$, so taking reciprocals changes the inequality to $\frac{1}{\sqrt[5]{(n+1)^2}} \leq \frac{1}{\sqrt[5]{n^2}}$. The sequence is decreasing. OR: if $f(x) = \frac{1}{\sqrt[5]{(x^2)}} = x^{-2/5}$ for $x \geq 1$, then $f'(x) = -\frac{2}{5}x^{-7/5} < 0$, so the function and the sequence are decreasing. \checkmark (e) Since the series satisfies the two conditions, by the Alternating Series Test, $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[5]{n^2}}$ converges.
 - **b)** (a–c) Use the alternating series test with $a_n = \frac{2n+1}{3n+2}$. (d) Check the two conditions.
 - 1. $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n+1}{3n+2} \stackrel{\text{HPwrs}}{=} \lim_{n \to \infty} \frac{2n}{3n} = \frac{2}{3} \neq 0$. Fails. (e) Since this hypothesis is not satisfied, the alternating series test does not apply. However, by the *n*th term test the series diverges since the *n*th term does not go to 0.
 - c) (a-c) Use the alternating series test with $a_n = \frac{\ln n}{n}$. (d) Check the two conditions.

1.
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\ln n}{n} = \lim_{x \to \infty} \frac{\ln x}{x} \stackrel{\text{l'Ho}}{=} \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0.\checkmark$$

- 2. Decreasing? Let $f(x) = \frac{\ln x}{x}$. Then $f'(x) = \frac{\frac{1}{x} \cdot x \ln x \cdot 1}{x^2} = \frac{1 \ln x}{x^2} < 0$ for $x \ge 3$. The sequence is decreasing. \checkmark (e) Since the series satisfies the two hypotheses, by the Alternating Series test, $\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n}$ converges.
- **d)** (a-c) Use the alternating series test with $a_n = \frac{3}{n^2 + 5n + 4}$. (d) Check the two conditions.

1.
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3}{n^2 + 5n + 4} = 0.\checkmark$$

2. Decreasing? As n increases, the numerator is constant and the denominator increases. So the sequence decreases. (Or use $f'(x) = \frac{-3(2x+5)}{(x^2+5x+4)^2} < 0$ for $x \ge 1$. The sequence is decreasing.

(e) Since the series satisfies the two hypotheses, by the Alternating Series test, so $\sum_{n=1}^{\infty} \frac{3(-1)^n}{n^2 + 5n + 4}$ converges.

$$\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n^6+1}}$$

3. See #1

4. a) (a) Limit comparison test. (b) $\sum \frac{n^2}{\sqrt{n^6+1}} \approx \sum \frac{n^2}{\sqrt{n^6}} = \sum \frac{n^2}{n^3} = \sum \frac{1}{n}$ (c) The terms are positive.

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2}{\sqrt{n^6 + 1}} \cdot \frac{n}{1} \stackrel{\text{HP}}{=} \lim_{n \to \infty} \frac{n3}{\sqrt{n^6}} = \lim_{n \to \infty} \frac{n3}{n^3} = 1.$$

Since $0 < L = 1 < \infty$ and since $\sum \frac{1}{n}$ diverges by the *p*-series test $(p = 1 \le 1)$, then $\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n^6+1}}$ diverges by the limit comparison test.

b) (a-c) $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{\sqrt{n^6 + 1}}$. Use the alternating series test with $a_n = \frac{n^2}{\sqrt{n^6 + 1}}$. (d) Check the two conditions.

1.
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2}{\sqrt{n^6 + 1}} \stackrel{\text{HP}}{=} \lim_{n \to \infty} \frac{n^2}{\sqrt{n^6}} \lim_{n \to \infty} \frac{n^2}{n^3} = \lim_{n \to \infty} \frac{1}{n} = 0.\checkmark$$

2. Decreasing? Let $f(x) = \frac{x^2}{\sqrt{x^6+1}}$

$$f'(x) = \frac{2x\sqrt{x^6 - 1} - \frac{x^2 \cdot 6x^5}{2\sqrt{x^6 + 1}}}{x^6 + 1} = \frac{2x\sqrt{x^6 - 1} - \frac{3x^7}{\sqrt{x^6 + 1}}}{x^6 + 1} = \frac{\frac{2x(x^6 - 1) - 3x^7}{\sqrt{x^6 + 1}}}{x^6 + 1} = \frac{\frac{2x - x^7}{\sqrt{x^6 + 1}}}{x^6 + 1} < 0$$

for x > 1. The sequence is decreasing.

(e) Since the series satisfies the two hypotheses, by the Alternating Series test, so does $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{\sqrt{n^6+1}}$. converges.