Math 131, Lab 13

Make sure to get your answers checked by a TA or me as you go along.

1. Go through this list of series and use a strategy to decide which test is appropriate to determine whether the series converges. In most cases you should be able to "predict" or outline whether the series converges.
a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^{2}+4 n}}$
b) $\sum_{n=1}^{\infty} \frac{2^{n+1}}{(2 n)!}$
c) $\sum_{n=1}^{\infty} \frac{3 n}{(n+1) 2^{n}}$
d) $\sum_{n=1}^{\infty}\left(\frac{4 n^{3}+1}{7 n^{3}+n}\right)^{2 n}$
e) $\sum_{n=1}^{\infty} \frac{2 \cdot n!}{n^{n}}$
f) $\sum_{n=1}^{\infty} \pi\left(\frac{e}{\pi}\right)^{\pi n}$
g) $\sum_{n=1}^{\infty} \tan \frac{1}{n^{3}}$
h) $\sum_{n=1}^{\infty} \frac{n^{n}}{2^{n} \cdot 1000^{2 n}}$
i) $\sum_{n=1}^{\infty} \frac{12 n^{34}+9 n^{9}}{10 n^{35}+n+1}$
j) $\sum_{n=1}^{\infty}\left(\frac{1}{n}+\frac{1}{2^{n}}\right)$
k) $\sum_{n=1}^{\infty}[\ln (3 n+5)-\ln (2 n+4)]$
1) $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{1}{n}+\frac{1}{2^{n}}\right)$
m) $\sum_{n=1}^{\infty}\left(\frac{1}{n}+\frac{1}{2^{n}}\right)^{3 n}$
n) $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{2 n^{2}}$
2. Determine whether these alternating series converge. Justify your answers with a complete argument.
a) $\sum_{n=1}^{\infty}(-1)^{n} \sin \frac{1}{n}$
b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 n+1)}{3 n+2}$
c) $\sum_{n=3}^{\infty} \frac{(-1)^{n} \ln n}{n}$
d) $\sum_{n=1}^{\infty} \frac{3(-1)^{n}}{n^{2}+5 n+4}$
3. How return to Problem 1 and do these parts in the order given: (a), (j), (i), (g), (m), (b), (k). Justify your answers with a complete argument.
4. Determine whether these series converge. Justify your answers with a complete argument.
a) Does $\sum_{n=1}^{\infty} \frac{n^{2}}{\sqrt{n^{6}+1}}$ converge?
b) Does $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{\sqrt{n^{6}+1}}$ converge?

s.дәмsū q.ioчS $\boldsymbol{\varepsilon}$

ooy (u tey/ooy (u

Lab 13 Answers

1. a) (a) Apply the Limit Comparison. (b) Similar to $\sum \frac{1}{n^{2 / 3}}$. (c) $\frac{1}{\sqrt[3]{n^{2}+4 n}}$ and $\frac{1}{n^{2 / 3}}$ are always positive. (d)

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[3]{n^{2}+4 n}} \cdot \frac{n^{2 / 3}}{1} \stackrel{\text { HPwrs }}{=} \lim _{n \rightarrow \infty} \frac{n^{2 / 3}}{\sqrt[3]{n^{2}}}=1>0 .
$$

(e) Since $0<L=1<\infty$ and since $\sum_{n=1}^{\infty} \frac{1}{n^{2 / 3}}$ diverges by the p-series test ($p=\frac{2}{3} \leq 1$), then $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^{2}+4 n}}$ diverges by the limit comparison test.
b) (a) Ratio test. (b) Factorials. (c) The terms $\frac{2^{n+1}}{(2 n)!}$ are positive. (d)

$$
r=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{2^{n+2}}{(2 n+2)!} \cdot \frac{(2 n)!}{2^{n+1}}=\lim _{n \rightarrow \infty} \frac{2}{(2 n+1)(2 n+2)}=0<1 .
$$

(e) Since $r<1$, by the ratio test the series converges.
c) (a) Apply the Limit Comparison test. (b) Notice (HP) $\sum \frac{3 n}{(n+1) 2^{n}} \approx \sum \frac{3}{2^{n}}$. So compare to the geometric series $\sum \frac{1}{2^{n}}$. (c) $\frac{3 n}{(n+1) 2^{n}}$ and $\frac{1}{2^{n}}$ are both positive. (d) So

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{3 n}{(n+1) 2^{n}} \cdot \frac{2^{n}}{1}=\lim _{n \rightarrow \infty} \frac{3 n}{n+1} \stackrel{\text { HPwrs }}{=} \lim _{n \rightarrow \infty} \frac{3 n}{n}=3>0 .
$$

(e) Since $0<L=3<\infty$ and since $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converges by the geometric series test $\left(|r|=\frac{1}{2}<1\right)$, then $\sum_{n=1}^{\infty} \frac{3 n}{(n+1) 2^{n}}$ converges by the limit comparison test. OR: (a-b) Ratio test, because there are nth powers. (c) The terms are positive. (d)

$$
r=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{3(n+1)}{(n+2) 2^{n+1}} \cdot \frac{(n+1) 2^{n}}{3 n}=\lim _{n \rightarrow \infty} \frac{(n+1)}{(n+2) 2} \cdot \frac{(n+1)}{n}=\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{2 n^{2}+2 n} \stackrel{\text { HP }}{=} \frac{1}{2}<1 .
$$

(e) Since $r<1$ by the ratio test the series converges.
d) (a) Root test (b) because there are powers. (c) The terms $\left(\frac{4 n^{3}+1}{7 n^{3}+n}\right)^{2 n}$ are positive. (d)

$$
r=\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty}\left[\left(\frac{4 n^{3}+1}{7 n^{3}+n}\right)^{2 n}\right]^{1 / n}=\lim _{n \rightarrow \infty}\left(\frac{4 n^{3}+1}{7 n^{3}+n}\right)^{2} \stackrel{\mathrm{HP}}{=}\left(\frac{4}{7}\right)^{2}<1 .
$$

(e) Since $r<1$ by the root test the series converges.
e) (a) Ratio test (b) because of the factorial. (c) The terms are positive. (d) $r=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{n+1}}{2 \cdot(n+1)!}$. $\frac{2 \cdot n!}{n^{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{n+1}}{(n+1) n^{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{n}}{n^{n}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(\frac{1+\frac{1}{n}}{1}\right)^{n}=\frac{e}{1}>1$. (e) Since $r>1$ by the ratio test the series diverges.
f) (a) Geometric series test. (b) We can rewrite it as the geometric series $\sum_{n=1}^{\infty} \pi\left[\left(\frac{e}{\pi}\right)^{\pi}\right]^{n}$. (d) $|r|=\left(\frac{e}{\pi}\right)^{\pi}<1$ Since $|r|<1$, the geometric series test says the series converges.
g) (a) Limit comparison test. (b) Looks like the p-series $\sum \frac{1}{n^{3}}$. (c) The terms are positive because $0<\frac{1}{n^{3}}<1<\pi / 2$, so $\tan \frac{1}{n^{3}}>0$.

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\tan \frac{1}{n^{3}}}{\frac{1}{n^{3}}}=\lim _{x \rightarrow \infty} \frac{\tan \frac{1}{x^{3}}}{\frac{1}{x^{3}}} \stackrel{1^{\prime} \text { Ho }}{=} \lim _{x \rightarrow \infty} \frac{\sec ^{2}\left(\frac{1}{x^{3}}\right)\left(-\frac{3}{x^{4}}\right)}{-\frac{3}{x^{4}}}=\lim _{x \rightarrow \infty} \sec ^{2} \frac{1}{x^{3}}=\sec ^{2} 0=1 .
$$

Since $0<L=1<\infty$ and since $\sum \frac{1}{n^{3}}$ converges by the p-series test ($p=3>1$), then $\sum \tan \frac{1}{n^{3}}$ converges by the limit comparison test.
h) (a-b) Use the root test because of the powers. (c) The terms $\frac{n^{n}}{2^{n} \cdot 1000^{2 n}}$ are positive. (d)

$$
r=\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty}\left[\frac{n^{n}}{2^{n} \cdot 1000^{2 n}}\right]^{1 / n}=\lim _{n \rightarrow \infty}\left(\frac{n}{2 \cdot 1000^{2}}\right)=\infty>1
$$

(e) Since $r>1$ by the root test the series diverges.
i) (a) Limit comparison test. (b) Looks like the p-series $\sum \frac{1}{n}$. (c) The terms of both series are clearly positive.

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{12 n^{34}+9 n^{9}}{10 n^{35}+n+1} \cdot \frac{n}{1}=\lim _{n \rightarrow \infty} \frac{12 n^{35}+9 n^{10}}{10 n^{35}+n+1} \stackrel{\text { HPwrs }}{=}=\lim _{n \rightarrow \infty} \frac{12 n^{35}}{10 n^{35}}=\frac{12}{10}
$$

Since $0<L=\frac{12}{10}<\infty$ and since $\sum \frac{1}{n}$ diverges by the p-series test $(p=1 \leq 1)$, then $\sum_{n=1}^{\infty} \frac{12 n^{34}+9 n^{9}}{10 n^{35}+n+1}$ diverges by the limit comparison test.
j) (a) Direct comparison with $\sum \frac{1}{n}$. (b) Notice that the terms are larger than those in $\sum \frac{1}{n}$, so we expect the series to diverge. (c-d) Specifically $0<\frac{1}{n}<\frac{1}{n}+\frac{1}{2^{n}}$. (e) Since $\sum \frac{1}{n}$ diverges (p-series, $p=1$), then by direct comparison, the LARGER series $\sum_{n=1}^{\infty}\left(\frac{1}{n}+\frac{1}{2^{n}}\right)$ also converges.
k) (a-c) Divergence Test: the nth term does not go to 0 . (d) $\lim _{n \rightarrow \infty}[\ln (3 n+5)-\ln (2 n+4)]=\lim _{n \rightarrow \infty} \ln \left(\frac{3 n+5}{2 n+4}\right) \stackrel{\text { HP }}{=}$ $\ln \left(\frac{3 n}{2 n}\right)=\ln \frac{3}{2} \neq 0$. (e) By the Divergence Test, the series diverges.
l) (a-c) Use the alternating series test with $a_{n}=\frac{1}{n}+\frac{1}{2^{n}}>0$ (positive terms). (d) Check the two conditions: (i): $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}+\frac{1}{2^{n}} \stackrel{\text { KeyLim }}{=} 0+0=0 . \checkmark$ (ii): Decreasing? As n increases, the numerators are constant and the denominators increase, so the terms are decreasing. [Or take the derivative $f(x)=\frac{1}{x}+\left(\frac{1}{2}\right)^{x}=x^{-1}+\left(\frac{1}{2}\right)^{x}$ so $f^{\prime}(x)=-x^{-2}+\ln \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{x}<0 \checkmark \quad(x \geq 1)$ (Remember $\ln \left(\frac{1}{2}\right)<0$.) So $f(x)$ and a_{n} are decreasing.] (e) By the Alternating Series Test the series converges.
m) (a-b) Root test because of the powers. (c) The terms are positive $\left(\frac{1}{n}+\frac{1}{2^{n}}\right)^{3 n}$ are positive. (d) So

$$
r=\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty}\left[\left(\frac{1}{n}+\frac{1}{2^{n}}\right)^{3 n}\right]^{1 / n}=\lim _{n \rightarrow \infty}\left(\frac{1}{n}+\frac{1}{2^{n}}\right)^{3} \stackrel{\text { KeyLim }}{=}(0+0)^{3}=0<1
$$

(e) Since $r<1$ by the root test the series converges.
n) (a-b) Root test because of the powers. (c) The terms are positive $\left(\frac{n}{n+1}\right)^{2 n^{2}}$ are positive. (d) So

$$
r=\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty}\left[\left(\frac{n}{n+1}\right)^{2 n^{2}}\right]^{1 / n}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{2 n}=\lim _{n \rightarrow \infty}\left[\left(\frac{1}{1+1 / n}\right)^{n}\right]^{2} \stackrel{\operatorname{Keylim}}{=}\left(\frac{1}{e}\right)^{2}<1
$$

(e) Since $r<1$ by the root test the series converges.
2. a) (a) The series is alternating. (b-c) Use the alternating series test with $a_{n}=\frac{1}{\sqrt[5]{n^{2}}}$. Check the two conditions.

1. $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[5]{n^{2}}}=0 . \checkmark$
2. Decreasing? Is $a_{n+1} \leq a_{n}$? Because $\sqrt[5]{(n+1)^{2}} \geq \sqrt[5]{n^{2}}$, so taking reciprocals changes the inequality to $\frac{1}{\sqrt[5]{(n+1)^{2}}} \leq$ $\frac{1}{\sqrt[5]{n^{2}}}$. The sequence is decreasing. OR: if $f(x)=\frac{1}{\sqrt[5]{x^{2}}}=x^{-2 / 5}$ for $x \geq 1$, then $f^{\prime}(x)=-\frac{2}{5} x^{-7 / 5}<0$, so the function and the sequence are decreasing. \checkmark (e) Since the series satisfies the two conditions, by the Alternating Series Test, $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt[5]{n^{2}}}$ converges.
b) (a-c) Use the alternating series test with $a_{n}=\frac{2 n+1}{3 n+2}$. (d) Check the two conditions.
3. $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{2 n+1}{3 n+2} \stackrel{\text { HPwrs }}{=} \lim _{n \rightarrow \infty} \frac{2 n}{3 n}=\frac{2}{3} \neq 0$. Fails. (e) Since this hypothesis is not satisfied, the alternating series test does not apply. However, by the nth term test the series diverges since the nth term does not go to 0 .
c) (a-c) Use the alternating series test with $a_{n}=\frac{\ln n}{n}$. (d) Check the two conditions.
4. $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\ln n}{n}=\lim _{x \rightarrow \infty} \frac{\ln x}{x} \stackrel{1^{\prime} \text { Но }}{=} \lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=0 . \checkmark$
5. Decreasing? Let $f(x)=\frac{\ln x}{x}$. Then $f^{\prime}(x)=\frac{\frac{1}{x} \cdot x-\ln x \cdot 1}{x^{2}}=\frac{1-\ln x}{x^{2}}<0$ for $x \geq 3$. The sequence is decreasing. \checkmark (e) Since the series satisfies the two hypotheses, by the Alternating Series test, $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln n}{n}$ converges.
d) (a-c) Use the alternating series test with $a_{n}=\frac{3}{n^{2}+5 n+4}$. (d) Check the two conditions.
6. $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{3}{n^{2}+5 n+4}=0 . \checkmark$
7. Decreasing? As n increases, the numerator is constant and the denominator increases. So the sequence decreases. (Or use $f^{\prime}(x)=\frac{-3(2 x+5)}{\left(x^{2}+5 x+4\right)^{2}}<0$ for $x \geq 1$. The sequence is decreasing. \checkmark
(e) Since the series satisfies the two hypotheses, by the Alternating Series test, so $\sum_{n=1}^{\infty} \frac{3(-1)^{n}}{n^{2}+5 n+4}$ converges. $\sum_{n=1}^{\infty} \frac{n^{2}}{\sqrt{n^{6}+1}}$
8. See \#1
9. a) (a) Limit comparison test. (b) $\sum \frac{n^{2}}{\sqrt{n^{6}+1}} \approx \sum \frac{n^{2}}{\sqrt{n^{6}}}=\sum \frac{n^{2}}{n^{3}}=\sum \frac{1}{n}$ (c) The terms are positive.

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt{n^{6}+1}} \cdot \frac{n}{1} \stackrel{\mathrm{HP}}{=} \lim _{n \rightarrow \infty} \frac{n 3}{\sqrt{n^{6}}}=\lim _{n \rightarrow \infty} \frac{n 3}{n^{3}}=1 .
$$

Since $0<L=1<\infty$ and since $\sum \frac{1}{n}$ diverges by the p-series test ($p=1 \leq 1$), then $\sum_{n=1}^{\infty} \frac{n^{2}}{\sqrt{n^{\sigma}+1}}$ diverges by the limit comparison test.
b) (a-c) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{\sqrt{n^{6}+1}}$. Use the alternating series test with $a_{n}=\frac{n^{2}}{\sqrt{n^{6}+1}}$. (d) Check the two conditions.

1. $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt{n^{6}+1}} \stackrel{\text { HP }}{=} \lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt{n^{6}}} \lim _{n \rightarrow \infty} \frac{n^{2}}{n^{3}}=\lim _{n \rightarrow \infty} \frac{1}{n}=0 . \checkmark$
2. Decreasing? Let $f(x)=\frac{x^{2}}{\sqrt{x^{6}+1}}$

$$
f^{\prime}(x)=\frac{2 x \sqrt{x^{6}-1}-\frac{x^{2} \cdot 6 x^{5}}{2 \sqrt{x^{6}+1}}}{x^{6}+1}=\frac{2 x \sqrt{x^{6}-1}-\frac{3 x^{7}}{\sqrt{x^{6}+1}}}{x^{6}+1}=\frac{\frac{2 x\left(x^{6}-1\right)-3 x^{7}}{\sqrt{x^{6}+1}}}{x^{6}+1}=\frac{\frac{2 x-x^{7}}{\frac{\sqrt{x}+1}{6}}}{x^{6}+1}<0
$$

for $x>1$. The sequence is decreasing. \checkmark
(e) Since the series satisfies the two hypotheses, by the Alternating Series test, so does $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{\sqrt{n^{6}+1}}$. converges.

