Math 131 Lab 14: Series

- 1. Determine whether these arguments are correct. If not, correct them.
	- **a**) Determine whether $\sum_{n=0}^{\infty} \frac{(-1)^n 2n^4}{n}$ $n=1$ $\frac{1}{6n^9 - 1}$ converges absolutely, conditionally, or diverges. ARGUMENT: Use the alternat-

ing series test with $a_n = \frac{2n^4}{6n^9-1} > 0$. Check the two conditions: (i): $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n^4}{6n^9-1}$ $\frac{2n^4}{6n^9 - 1} = \lim_{n \to \infty} \frac{2}{6n}$ $\frac{2}{6n^5} = 0.\checkmark$ (ii): Decreasing? Take the derivative! (You can't just say the bottom gets bigger since the top gets bigger, too!) $f(x) = \frac{2x^4}{6x^9 - 1}$ so

$$
f'(x) = \frac{8x^3(6x^9 - 1) - (2x^4)54x^8}{(6x^9 - 1)^2} = \frac{-60x^{12} - 8x^3}{(6x^9 - 1)^2} < 0
$$

so $f(x)$ and a_n are decreasing. So by the Alternating Series Test the series converges conditionally.

- **b**) Determine whether $\sum_{n=1}^{\infty}$ $n=1$ $(-1)^n(2n+1)$ $\frac{(2n+1)}{6n+2}$ converges absolutely, conditionally, or diverges. ARGUMENT: Notice \sum^{∞} $n=1$ $\begin{array}{c} \hline \rule{0pt}{2.2ex} \\ \rule{0pt}{2.2ex} \end{array}$ $(-1)^n(2n + 1)$ $6n + 2$ \vert = \sum^{∞} $n=1$ $2n + 1$ $\frac{2n+1}{6n+2} = \lim_{n \to \infty} \frac{2n+1}{6n+2}$ $\frac{2n+1}{6n+2}$ HPwrs $\lim_{n\to\infty}\frac{2n}{6n}$ $\frac{2n}{6n} = \frac{1}{3}$ $\frac{1}{3}$. So the series converges absolutely.
- c) Determine the radius and interval of convergence for the power series $\sum_{n=1}^{\infty}$ $n=0$ x^n $\frac{x}{3n^2+1}$. ARGUMENT: We know that the series converges at its center $a = 0$. For any $x \neq 0$

$$
\lim_{n \to \infty} \left| \frac{A_{n+1}}{A_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{3(n+1)^2 + 1} \cdot \frac{3n^2 + 1}{x^n} \right| = \lim_{n \to \infty} \left| \frac{3n^2 + 1}{3n^2 + 6n + 4} \cdot x \right| \stackrel{\text{HPwrs}}{=} \lim_{n \to \infty} \left| \frac{3n^2}{3n^2} \cdot x \right| = |x|.
$$

By the ratio test, the series *converges* if $|x| < 1$ and *diverges* when $|x| > 1$. The radius of convergence is $R = 1$. Check the endpoints $a - R = 0 - 1 = -1$ and $a + R = 0 + 1 = 1$. For $x = 1$: We get $\sum_{n=1}^{\infty}$ $n=0$ 1 $\frac{1}{3n^2+1}$. Since $0 < \frac{1}{3n^2+1} < \frac{1}{n^2}$ and since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges. For $x = -1$: We get $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2}$. However, we just saw that $\sum_{n=0}^{\infty} \left| \frac{(-1)^n}{n^2} \right| = \sum_{n=0}^{\infty} \frac{1}{n^2}$ converges. $\frac{1}{n^2}$ converges (p-series, $p = 2 > 1$), then by direct comparison $\sum_{n=0}^{\infty} \frac{1}{3n^2}$. $3n^2 + 1$ $n=0$ $(-1)^n$ $\frac{(-1)^n}{3n^2+1}$. However, we just saw that $\sum_{n=0}^{\infty}$ $n=0$ $(-1)^n$ $3n^2 + 1$ \vert = \sum^{∞} $n=0$ 1 $rac{1}{3n^2+1}$ converges. Hence, $\sum_{n=1}^{\infty}$ $n=0$ $(-1)^n$ $\frac{(1)}{3n^2+1}$ converges by the absolute convergence test. The interval of convergence is $[-1, 1]$ and includes

both endpoints.

2. Determine whether these series converge absolutely, conditionally, or not at all. (Hint: Remember to use theRatio Test Extension for absolute convergence/divergence, when it is appropriate.)

a)
$$
\sum_{n=1}^{\infty} \frac{(-1)^n (2n+1)}{3n^2+2}
$$
 b) $\sum_{n=1}^{\infty} \frac{(-1)^n n 2^n}{3^{n+1}}$ c) $\sum_{n=1}^{\infty} \frac{n!}{(-3)^n}$

3. Find the radius R and interval of convergence for each of these series. Remember the endpoints.

a)
$$
\sum_{n=1}^{\infty} \frac{(2x)^n}{n^2}
$$
 b) $\sum_{n=1}^{\infty} \frac{(-1)^n n! x^n}{4n}$ c) $\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{9^n}$
d) $\sum_{n=0}^{\infty} \frac{(x-4)^n}{n+1}$ e) $\sum_{n=1}^{\infty} \frac{n(x-1)^n}{3^{2n}}$ f) $\sum_{n=1}^{\infty} \frac{n! x^n}{(2n)!}$

4. EXTRA FUN: If you finish early: Find the radius of convergence R for $\sum_{n=1}^{\infty}$ $n=1$ $\frac{n!x^n}{1\cdot 3\cdot 5\cdots (2n+1)}$ and for $\sum_{n=1}^{\infty}$ $n^n x^n$ $\frac{x}{n!}$.

Brief Answers

- 1. a) Wrong. What didn't the student check? (b) Wrong, in so many ways. (c) Correct. This is a model of how I want your answers in $#3$ to be!
- 2. Conditional, Absolute, Diverge.
- 3. Lots of justification (words) required!

a)
$$
[-1/2, 1/2]
$$
 b) $\{0\}$ **c)** $(-3, 3)$ **d)** $[3, 5)$ **e)** $(-8, 10)$ **f)** $(-\infty, \infty)$

4. Ask.

Background

- 1. Power Series. For a power series $\sum_{n=1}^{\infty}$ $n=0$ $a_n(x-a)^n$ centered at a, precisely one of the following is true.
	- a) The series converges only at $x = a$.
	- b) There is a real number $R > 0$ so that the series converges absolutely for $|x a| < R$ and diverges for $|x a| > R$.
	- c) The series converges for all x .

NOTE: In case (b) the power series may converge at both endpoints $a - R$ and $a + R$, either endpoint, or neither endpoint. You must check the convergence at the endpoints separately. Here's what the intervals of convergence can look like:

$$
[a-r, a+r]
$$
 $[a-r, a+r)$ $(a-r, a+r]$ $(a-r, a+r)$

.

2. The Ratio Test Extension. Assume that $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} a_n$ is a series with **non-zero** terms and let $r = \lim_{n \to \infty} \left| \right|$ a_{n+1} a_n $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$

- 1. If $r < 1$, then the series $\sum a_n$ converges absolutely.
- 2. If $r > 1$ (including ∞), then the series $\sum a_n$ diverges.
- 3. If $r = 1$, then the test is inconclusive. The series may converge or diverge.
- 3. The Alternating Series Test. Assume $a_n > 0$. The alternating series $\sum_{n=0}^{\infty}$ $n=1$ $(-1)^n a_n$ converges if the follow two conditions hold:
	- a) $\lim_{n\to\infty} a_n = 0$
	- b) $a_{n+1} \le a_n$ for all n (i.e., a_n is decreasing which can also be tested by showing $f'(x) < 0$).

4. Absolute Convergence Test. If the series
$$
\sum_{n=1}^{\infty} |a_n|
$$
 converges, then so does the series $\sum_{n=1}^{\infty} a_n$.

Lab 14 Answers

1. a) Wrong. The student never checked for absolute convergence. ARGUMENT: First we check absolute convergence. \sum^{∞} $n=1$ $\begin{array}{c} \hline \rule{0pt}{2.2ex} \\ \rule{0pt}{2.2ex} \end{array}$ $(-1)^n (2n^4)$ $6n^9-1$ $\Big| =$ \sum^{∞} $n=1$ $2n^4$ $\frac{2n^2}{6n^9-1}$. Notice that $\frac{2n^4+1}{6n^9+2} \approx \frac{1}{n^5}$. So let's use the limit comparison test. The terms of the series are positive and

$$
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^4}{6n^9 - 1} \cdot \frac{n^5}{1} = \lim_{n \to \infty} \frac{2n^9}{6n^9 - 1} \stackrel{\text{HPwrs}}{=} \lim_{n \to \infty} \frac{2n^9}{6n^9} = \frac{1}{3}.
$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^5}$ converges (*p*-series with $p = 5 > 1$), then $\sum_{n=1}^{\infty}$ $n=1$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $(-1)^n (2n^4)$ $6n^9-1$ converges by the limit comparison test.

So the series converges absolutely.

- b) Wrong. Puleeze never do this! You might start with the alternating series test with $a_n = \frac{2n+1}{6n+2} \neq 0$. Check the two conditions (i): $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n+1}{6n+2}$ $\frac{2n+1}{6n+2}$ HPwrs $\lim_{n\to\infty}\frac{2n}{6n}$ $\frac{2n}{6n} = \frac{1}{3}$ $\frac{1}{3}$. So the series diverges by the *n*th term test (not the alternating series test). It's the n th term test.
- c) Correct. This is what I want your answers in $#3$ to be!
- **2.** a) $\sum_{n=1}^{\infty} \frac{(-1)^n (2n+1)}{3n^2+2}$. The series is similar to $\sum_{n=1}^{\infty} \frac{1}{n}$, so it probably will not converge absolutely. ARGUMENT: Use the alternating series test with $a_n = \frac{2n+1}{3n^2+2} > 0$. Check the two conditions: (i): $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n+1}{3n^2+2}$ $rac{2n+1}{3n^2+2}$ HPwrs $\lim_{n\to\infty}\frac{2n}{3n^2}$ $rac{2n}{3n^2} = \lim_{n \to \infty} \frac{2}{3n}$ $\frac{2}{3n} = 0.\checkmark$ (ii): Decreasing? Take the derivative. (You can't just say the bottom gets bigger since the top gets bigger, too!) $f(x) = \frac{2x+1}{3x^2+2}$ so

$$
f'(x) = \frac{2(3x^2+2) - (2x+1)6x}{(3x^2+2)^2} = \frac{-6x^2 - 6x^2 + 4}{(3x^2+2)^2} < 0 \checkmark \qquad (x \ge 1)
$$

so $f(x)$ and a_n are decreasing. By the Alternating Series Test the series converges. Now check absolute convergence. $\sum_{n=1}^{\infty}$ $(-1)^{n}(2n+1)$ $\left|\frac{1}{3n^2+2}\right| = \sum_{n=1}^{\infty} \frac{2n+1}{3n^2+2}$. Compare to $\sum_{n=1}^{\infty} \frac{1}{n}$. Notice both $\frac{1}{n} > 0$ and $\frac{2n+1}{3n^2+2} > 0$. Then

$$
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n+1}{3n^2+2} \cdot \frac{n}{1} = \lim_{n \to \infty} \frac{2n^2+n}{3n^2+2} \stackrel{\text{HPwrs}}{=} \lim_{n \to \infty} \frac{2n^2}{3n^2} = \frac{2}{3} > 0.
$$

Since $\sum_{n=0}^{\infty} \frac{1}{n}$ diverges by the p-series test $(p=1)$, then by the limit comparison test $\sum_{n=0}^{\infty} \frac{2n+1}{3n^2+1}$ also diverges. So the series is conditionally convergent.

b) $\sum_{n=1}^{\infty} \frac{(-1)^n n 2^n}{3^{n+1}}$. Because of the *n*th powers, try the ratio test extension first (testing for absolute convergence) with $a_n = \frac{n2^n}{3^{n+1}} \neq 0$.

$$
\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} (n+1) 2^{n+1}}{3^{n+2}} \cdot \frac{3^{n+1}}{(-1)^n n 2^n} \right| = \lim_{n \to \infty} \left| \frac{2(n+1)}{3n} \right| \stackrel{\text{HPwrs}}{=} \lim_{n \to \infty} \frac{2n}{3n} = \frac{2}{3} < 1.
$$

By the ratio test the series converges absolutely.

c) $\sum_{n=1}^{\infty} \frac{n!}{(-3)^n}$. Because of the *n*th power and factorial, try the ratio test first (testing for absolute convergence) with $a_n = \frac{n!}{(-3)^n} \neq 0$.

$$
\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)!}{(-3)^{n+1}} \cdot \frac{(-3)^n}{n!} \right| = \lim_{n \to \infty} \left| \frac{n+1}{3} \right| = \infty > 1.
$$

By the ratio test the series diverges.

3. a) $\sum_{n=1}^{\infty}$ $n=0$ $(2x)^n$ $\frac{a}{n^2}$. ARGUMENT: The series converges at its center $a = 0$. Apply the ratio test. For any $x \neq 0$

$$
\lim_{n \to \infty} \left| \frac{A_{n+1}}{A_n} \right| = \lim_{n \to \infty} \left| \frac{(2x)^{n+1}}{(n+1)^2} \cdot \frac{n^2}{(2x)^n} \right| = \lim_{n \to \infty} \left| \frac{n^2 2x}{(n+1)^2} \right| = \lim_{n \to \infty} \left| \frac{n^2}{n^2 + 2n + 1} \cdot 2x \right| \stackrel{\text{HPwrs}}{=} \lim_{n \to \infty} \left| \frac{n^2}{n^2} \cdot 2x \right| = 2|x|.
$$

By the ratio test, the series *converges* if $2|x| < 1 \iff |x| < \frac{1}{2}$ and *diverges* when $|x| > \frac{1}{2}$. The radius of convergence is $R = \frac{1}{2}$. Check the endpoints $-\frac{1}{2}$ and $\frac{1}{2}$? For $x = \frac{1}{2}$. We get

$$
\sum_{n=0}^{\infty} \frac{(2(\frac{1}{2}))^n}{n^2} = \sum_{n=0}^{\infty} \frac{1}{n^2}
$$

which converges by the *p*-series test $(p = 2 > 1)$. For $x = -\frac{1}{2}$: We get

$$
\sum_{n=0}^{\infty} \frac{(2(-\frac{1}{2}))^n}{n^2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n^2}
$$

But this series converges absolutely (we just did it). The interval of convergence is $[-\frac{1}{2}, \frac{1}{2}]$.

b) $\sum_{n=1}^{\infty}$ $n=0$ $(-1)^n n!x^n$ $\frac{1}{4n}$. ARGUMENT: The series converges at its center $a = 0$. Apply the ratio test. For any $x \neq 0$

$$
\lim_{n \to \infty} \left| \frac{A_{n+1}}{A_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} (n+1)! x^{n+1}}{4(n+1)} \cdot \frac{4n}{(-1)^n n! x^n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)n}{n+1} \cdot x \right| = \lim_{n \to \infty} |nx| = \infty > 1.
$$

By the ratio test, the series *diverges* when $|x| > 0$. The radius of convergence is $R = 0$. The series only converges at $x = 0$.

c) $\sum_{n=1}^{\infty}$ $n=0$ $(-1)^n x^{2n}$ $\frac{f(x)}{9^n}$. The series converges at its center $a = 0$. Apply the ratio test. For any $x \neq 0$

$$
\lim_{n \to \infty} \left| \frac{A_{n+1}}{A_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2(n+1)}}{9^{n+1}} \cdot \frac{9^n}{(-1)^n x^{2n}} \right| = \lim_{n \to \infty} \left| \frac{x^2}{9} \right|.
$$

By the ratio test, the series *converges* if $\frac{x^2}{9}$ $\left| \frac{x^2}{9} \right| < 1 \iff |x^2| < 9 \iff |x| < 3$ and *diverges* when $|x| > 3$. The radius of convergence is $R = 3$. Check the endpoints $a - R = 0 - 3 = -3$ and $a + R = 0 + 3 = 3$. For $x = 3$: We get

$$
\sum_{n=0}^{\infty} \frac{(-1)^n 3^{2n}}{9^n} = \sum_{n=0}^{\infty} (-1)^n
$$

which diverges by the geometric series test ($|r| = 1$). The same is true for $x = -3$: Again we get

$$
\sum_{n=0}^{\infty} \frac{(-1)^n (-3)^{2n}}{9^n} = \sum_{n=0}^{\infty} (-1)^n.
$$

The interval of convergence is $(-3, 3)$.

d) $\sum_{n=1}^{\infty}$ $n=1$ $(x-4)^n$ $\frac{n+1}{n+1}$. ARGUMENT: The series converges at its center $a = 4$. Apply the ratio test. For any $x \neq 4$

$$
\lim_{n \to \infty} \left| \frac{A_{n+1}}{A_n} \right| = \lim_{n \to \infty} \left| \frac{(x-4)^{n+1}}{n+2} \cdot \frac{n+1}{(x-4)^n} \right| = \lim_{n \to \infty} \left| \frac{n+2}{n+1} \cdot (x-4) \right| \stackrel{\text{HPwrs}}{=} \lim_{n \to \infty} \left| \frac{n}{n} \cdot (x-4) \right| = |x-4|.
$$

By the ratio test, the series *converges* if $|x-4| < 1$ and *diverges* when $|x-4| > 1$. The radius of convergence is $R = 1$. Check the endpoints: $a - R = 4 - 1 = 3$ and $a + R = 4 + 1 = 5$. For $x = 3$: We get

$$
\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}
$$

Use the alternating series test with $a_n = \frac{1}{n+1} \neq 0$. Check the two conditions. (1) $\lim_{n \to \infty} \frac{1}{n+1} = 0 \checkmark$ and (2) $a_{n+1} \leq a_n$ since $\frac{1}{n+2} < \frac{1}{n+1}$ (decreasing). So the series converges at $x = 3$ by the alternating series test. For $x = 5$: We get

$$
\sum_{n=0}^{\infty} \frac{1}{n+1}.
$$

Use the limit comparison test with $\sum_{n=0}^{\infty} \frac{1}{n}$.

$$
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{n+1} \cdot \frac{n}{1} \stackrel{\text{HPwrs}}{=} 1.
$$

Since $\sum_{n=0}^{\infty} \frac{1}{n}$ diverges by the p-series test $(p = 1)$, then by the limit comparison test $\sum_{n=0}^{\infty} \frac{1}{n+1}$ also diverges. The interval of convergence is [3, 5).

e) $\sum_{n=1}^{\infty}$ $n=1$ $n(x-1)^n$ $\frac{1}{3^{2n}}$. The series converges at its center $a = 1$. Apply the ratio test. For any $x \neq 1$

$$
\lim_{n \to \infty} \left| \frac{A_{n+1}}{A_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)(x-1)^{n+1}}{3^{2(n+1)}} \cdot \frac{3^{2n}}{n(x-1)^n} \right| = \lim_{n \to \infty} \left| \frac{n+1}{3^2 n} \cdot (x-1) \right| \stackrel{\text{HPwrs}}{=} \lim_{n \to \infty} \left| \frac{n}{9n} \cdot (x-1) \right| = \left| \frac{x-1}{9} \right|.
$$

By the ratio test, the series *converges* if $\begin{bmatrix} 1 & 0 & W^1 & 1 & 1 \end{bmatrix}$ $(x-1)$ By the ratio test, the series *converges* if $\left|\frac{(x-1)}{9}\right| < 1 \iff |x-1| < 9$ and *diverges* when $|x-1| > 9$. The radius of convergence is $R = 9$. What about the endpoints $a - R = 1 - 9 = -8$ and $a + R = 1 + 9 = 10$? For $x = -8$: We get

$$
\sum_{n=1}^{\infty} \frac{n(1+8)^{2n}}{3^{2n}} = \sum_{n=1}^{\infty} \frac{n(-9)^n}{9^n} = \sum_{n=1}^{\infty} (-1)^n n.
$$

But $\lim_{n\to\infty}(-1)^n n$ DNE, so by the *n*th term test the series diverges. For $x=10$: We get

$$
\sum_{n=1}^{\infty} \frac{n(10-1)^n}{9^n} = \sum_{n=1}^{\infty} n
$$

and so the series diverges by the nth term test again. The interval of convergence is (−8, 10).

f) $\sum_{n=1}^{\infty}$ $n=1$ $\frac{n!x^n}{(2n)!}$. The series converges at its center $a = 0$. Apply the ratio test. For any $x \neq 0$

$$
\lim_{n \to \infty} \left| \frac{A_{n+1}}{A_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{(2n+2)!} \cdot \frac{(2n)!}{n! x^n} \right| = \lim_{n \to \infty} \left| \frac{n+1}{(2n+1)(2n+2)} \cdot x \right| = \lim_{n \to \infty} \left| \frac{1}{4n+2} \cdot x \right| = 0 < 1.
$$

By the ratio test, the series for all x The interval of convergence is $(-\infty, \infty)$.

4. a) $\sum_{n=1}^{\infty} \frac{n! x^n}{1 \cdot 3 \cdot 5 \cdots (2n+1)}$. Use the ratio test.

$$
\lim_{n \to \infty} \left| \frac{A_{n+1}}{A_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{1 \cdot 3 \cdot 5 \cdots (2n+3)} \cdot \frac{1 \cdot 3 \cdot 5 \cdots (2n+1)}{n! x^n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)x}{2n+3} \right| \xrightarrow{\text{HPwrs}} \lim_{n \to \infty} \left| \frac{nx}{2n} \right| = \lim_{n \to \infty} \left| \frac{x}{2} \right|.
$$

By the ratio test, the series *converges* if $|\frac{x}{2}| < 1 \iff |x| < 2$ and *diverges* when $|x| > 2$. The radius of convergence is $R=2$.

b) $\sum_{n=1}^{\infty} \frac{n^n x^n}{n!}$ Use the ratio test.

$$
\lim_{n \to \infty} \left| \frac{A_{n+1}}{A_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^{n+1} x^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n x^n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^{n+1} x}{(n+1) n^n} \right|
$$

$$
= \lim_{n \to \infty} \left| \frac{(n+1)^n x}{n^n} \right|
$$

$$
= \lim_{n \to \infty} \left| \left(\frac{n+1}{n} \right)^n \cdot x \right| = \lim_{n \to \infty} \left| \left(1 + \frac{1}{n} \right)^n \cdot x \right| = |ex|.
$$

By the ratio test, the series *converges* if $|ex| < 1 \iff |x| < \frac{1}{e}$. The radius of convergence is $R = \frac{1}{e}$.