
Improper Integrals

Introduction

When we defined the definite integral
Z b

a
f (x) dx

we assumed that f was continuous on [a, b] where [a, b] was a finite, closed interval.
There are at least two ways this definition can fail to be satisfied:

1. The interval [a, b] may be infinite with either a = �• or b = +• (or both), e.g.,
Z •

1

1
x2 dx.

2. The function may have one or more infinite discontinuities (vertical asymptotes)
somewhere on [a, b], e.g., in the integral

Z 1

�1

1
x

dx

the integrand 1
x has infinite an discontinuity at 0.

Such integrals are called improper integrals because they do not satisfy the defini-
tion of the definite integral. Nonetheless, we will see that under certain conditions
we can make sense numerically of such improper integrals. We will discuss each
type of violation separately.

Type 1: Improper Integrals on Infinite Intervals

We start with a definition that describes how we can make sense of definite inte-
grals on infinite intervals. The definition is divided into three parts depending on
the type of interval.

DEFINITION 7.6.1 (Improper Integrals on Infinite Intervals). There are three types of infinite in-
tervals to consider.

(a) Intervals of the form [a, •): If f is continuous on [a, •), then
Z •

a
f (x) dx = lim

b!•

Z b

a
f (x) dx

provided the limit exists. If limit exists, we say the improper integral converges.
Otherwise it diverges.

(b) Intervals of the form (�•, b]: If If f is continuous on (�•, b], then
Z b

�•
f (x) dx = lim

a!�•

Z b

a
f (x) dx
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provided the limit exists.

(c) Intervals of the form (�•, •): If f is continuous on (�•, •), then we define
Z •

�•
f (x) dx = lim

a!�•

Z c

a
f (x) dx + lim

b!•

Z b

c
f (x) dx,

provided both limits exist. Here c can be any convenient real number—often 0.

EXAMPLE 7.6.2. Let’s start with an easy example. Is
Z •

1

1
x2 dx convergent?

Solution. Using Definition 7.6.1, we evaluate the appropriate limit:
Z •

1

1
x2 dx = lim

b!•

Z b

1

1
x2 dx = lim

b!•

 
� 1

x

����
b

1

!
= lim

b!•

✓
�1

b
+ 1
◆
= 1.

1
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Figure 7.1: The area under the curve
f (x) = 1

x2 on the infinitely long interval
[1, •) is 1 square unit.

The improper integral converges to 1. Geometrically, this means that the area
under the curve f (x) = 1

x2 on the infinitely long interval [1, •) is 1 square unit (see
Figure 7.1.)

EXAMPLE 7.6.3. Here’s a similar example. Is
Z •

1

1
x

dx convergent?

Solution. The graph of this function (see Figure 7.2) is remarkably similar to the
previous example. Using Definition 7.6.1, we evaluate the appropriate limit:

Z •

1

1
x

dx = lim
b!•

Z b

1

1
x

dx = lim
b!•

 
ln |x|

����
b

1

!
= lim

b!•
[ln b � 0] = +•.
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Figure 7.2: The area under the curve
f (x) = 1

x on the infinitely long interval
[1, •) is unbounded or infinite, despite
the fact that the graph seems similar to
that of 1

x2 .

The natural log function increases without bound as x increases so the limit
does not exist. We say that the improper integral diverges or does not exist. Geo-
metrically, this means that the area under the curve f (x) = 1

x on the infinitely long
interval [1, •) is unbounded as x increases.

EXAMPLE 7.6.4. Here’s a more interesting example. Is
Z •

1

�2
x2 + x

dx convergent?

Solution. First notice that this function is continuous on the interval [1, •) since
the denominator is 0 only at x = �1 and 0. Use partial fractions for the integra-
tion.

�2
x2 + x

=
A
x
+

B
x + 1

=
Ax + A + Bx

x2 + x
.

Comparing the numerators

x’s: 0 = A + B
constants: �2 = A ) B = 2

Using Definition 7.6.1, we evaluate the appropriate limit:
Z •

1

�2
x2 + x

dx = lim
b!•

Z b

1

✓
� 2

x
+

2
x + 1

◆
dx = lim

b!•

 
�2 ln |x|+ 2 ln |x + 1|

����
b

1

!

= ln

 
2 lim

b!•

����
x + 1

x

����

����
b

1

!

= lim
b!•

✓
2 ln

����
b + 1

b

����� 2 ln 2
◆

= 2 ln lim
b!•

✓����
b + 1

b

����

◆
� 2 ln 2

l’Ho
= lim

b!•
2 ln 1 � 2 ln 2

= �2 ln 2
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So the improper integral converges. Notice how we simplified the natural log ex-
pression first using log rules to change a difference of logs into a log of a quotient.

EXAMPLE 7.6.5. Does
Z 0

�•

1p
4 � x

dx exist (converge)?

Solution. This time we apply Definition 7.6.1 (part b) and use a mini-substitution
to do the integral).1 1 Use u = 4 � x and �du = dx.

Z 0

�•

1p
4 � x

dx = lim
a!�•

Z 0

a
(4 � x)�1/2 dx = lim

a!�•
�2(4 � x)1/2

���
0

a

= lim
a!�•

h
�2[2 � (4 � a)1/2]

i
= +•.

The integral diverges.

Double Trouble

Some improper integrals have infinite upper and lower limits. According to Defini-
tion 7.6.1 we must break the integral into two pieces and evaluate each separately.
Only if both integrals converge does the entire integral converge.

EXAMPLE 7.6.6. Does
Z •

�•

1
1 + 4x2 dx converge?

Solution. First we split the integral into two pieces, say at a = 0. Then using
Definition 7.6.1 we have

Z •

�•

1
1 + 4x2 dx =

Z 0

�•

1
1 + 4x2 dx +

Z •

0

1
1 + 4x2 dx

Next we must evaluate each improper integral. You should recognize the inte-
grand as leading to an inverse tangent function.2 2 Hint: With more complicated im-

proper integrals, it often makes sense to
determine the antiderivative first. Then
do the evaluation with the appropriate
limits. In this case recall that

Z 1
a2 + u2 du =

1
a

arctan
u
a
+ c.

In this example, a = 1 and u = 2x, so
1
2 du = dx.

Z 0

�•

1
1 + 4x2 dx = lim

a!�•

Z 0

a

1
1 + 4x2 dx = lim

a!�•
1
2 arctan 2x

����
0

a

= lim
a!�•

1
2 (arctan 0 � arctan 2a)

=
1
2

h
0 �

⇣
�p

2

⌘i

=
p

4
.

Similarly, the other piece of the integral is

Z •

0

1
1 + 4x2 dx = lim

b!•

Z b

0

1
1 + 4x2 dx = lim

b!•
1
2 arctan 2x

����
b

0

= lim
a!�•

1
2 (arctan 2a � arctan 0)

=
1
2

hp

2
� 0
i

=
p

4
.

Putting this all together,
Z •

�•

1
1 + 4x2 dx =

Z 0

�•

1
1 + 4x2 dx +

Z •

�•

1
1 + 4x2 dx =

p

4
+

p

4
=

p

2
.

The integral converges.
Already these examples illustrate the importance of being able to evaluate limits

at infinity with confidence.
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EXAMPLE 7.6.7. Here’s a similar problem. Does
Z •

�•

x
1 + x2 dx converge?

Solution. We split the integral into two pieces at a = 0.
Z •

�•

x
1 + x2 dx =

Z 0

�•

x
1 + x2 dx +

Z •

0

x
1 + x2 dx

Next we must evaluate each improper integral. You should recognize this as a
substitution integral.3 3 u = 1 + x2 and 1

2 du = x dx. SoR x
1+x2 dx = 1

2
R 1

u du = 1
2 ln |u|+ c =

1
2 ln(1 + x2) + c.

Z 0

�•

x
1 + x2 dx = lim

a!�•

Z 0

a

x
1 + x2 dx = lim

a!�•
1
2 ln(1 + x2)

���
0

a

= lim
a!�•

1
2 [ln 1 � ln(1 + a2)] = �•.

Since this piece of the total integral diverges, by Definition 7.6.1 the entire im- Remember, lim
x!•

ln x = +•.

proper integral diverges. There is no need to try to evaluate the second piece.

EXAMPLE 7.6.8. Does
Z 0

�•
xex dx converge?

Solution. This is an integration by parts problem. Let u = x so du = dx and then
dv = ex dx so v = ex. Then

Z
xex dx = xex �

Z
ex dx = xex � ex = (x � 1)ex.

Returning to the improper integral
Z 0

�•
xex dx = lim

a!�•

Z 0

a
xex dx = lim

a!�•
(x � 1)ex

���
0

a
= lim

a!�•
[�1 � (a � 1)ea].

Notice that lim
a!�•

(a � 1)e�a has the form �• · 0 so we put it into �•
• form and use

l’Hôpital’s rule.

lim
a!�•

(a � 1)ea = lim
a!�•

(a � 1)
e�a

l’Ho
= lim

a!�•

1
�e�a&�•

= 0.

Putting all our work together,
Z 0

�•
xex dx = lim

a!�•
[�1 � (a � 1)e�a] = �1 � 0 = �1.

The integral converges.

YOU TRY IT 7.1. Determine which of these integrals converge. If the integral converges,
determine its value.

(a)
Z •

e

1
x(ln x)5 dx (b)

Z •

2

4
x2 � 1

dx (c)
Z •

2

4x
x2 � 1

dx (d)
Z •

�1

x
(x2 + 2)3 dx

answertoyoutryit7.1.NOTinorder:1
36,diverges,2ln3,and1

4.

webwork: Click to try Problems 125 through 127. Use guest login, if not in my course.

YOU TRY IT 7.2. Prove that if n > 1, then
Z •

1

1
xn dx converges to 1

n�1 .

YOU TRY IT 7.3. Prove that if n < 1, then
Z •

1

1
xn dx diverges. Note: When n is negative,

remember that
Z •

1

1
xn dx =

Z •

1
x�n dx where �n is now a positive number.

Putting the last two exercises together with Example 7.6.3 you have proven the
following result:
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THEOREM 7.6.9 (The p-Power Test). For any real number p

Z •

1

1
xp dx =

(
1

p�1 , if p > 1

diverges, if p  1
.

YOU TRY IT 7.4. Evaluate each of these integrals or determine that it diverges by using
Theorem 7.6.9. You should not need to do any antidifferentiation.

(a)
Z •

1

1
x2 dx (b)

Z •

1

1
x2/3 dx (c)

Z •

1

2
x7 dx (d)

Z •

1

1
x�15 dx

YOU TRY IT 7.5 (Gabriel’s Horn). The infinitely-long solid formed by revolving the curve
f (x) = 1

x about the x-axis over the interval [1, •) is called Gabriel’s Horn. (Do you know
why?) Show that the volume is finite. See Figure 7.3
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Figure 7.3: The area under the curve
f (x) = 1

x is rotated around the x-axis.Problems

1. Determine
Z •

2

9
x2 + x � 2

dx.

2. Bonus: First determine
Z

e�x cos x dx. Then use your answer to determine
Z •

0
e�x cos x dx. Show your work.


