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1.3 Continuous Functions and Riemann Sums

In Example 1.2.2 we saw that lim
n!•

Lower(n) = lim
n!•

Upper(n) for the function

f (x) = 1 + 1
2 x

2 on [0, 2]. This is no accident. It is an example of the following
theorem.

THEOREM 1.3.1. Let f be a (non-negative) continuous function on the closed interval [a, b].
The limits as n ! • of the upper and lower Riemann sums for regular partitions both ex-
ist and are equal. That is,

lim
n!•

Lower(n) = lim
n!•

Upper(n),

in other words,

lim
n!•

n

Â
k=1

f (m
k

)Dx = lim
n!•

n

Â
k=1

f (M

k

)Dx.

The proof of this theorem is hard. It is covered in our Math 331 course. But
you have seen at least one example where this theorem holds and we will see
other examples later. The function need not be non-negative, but the answer will
represent an area only when the function is non-negative.

There is an important consequence to Theorem 1.3.1. Because f (m
k

) and f (M

k

)

are the minimum and maximum values of f on the kth subinterval,1 if c

k

is any

1 This is why we need f to be continu-
ous. Continuous functions always have
both a max and a min on any closed
interval.

number in the kth interval then

f (m
k

)  f (c
k

)  f (M

k

).

So
n

Â
k=1

f (m
k

)Dx 
n

Â
k=1

f (c
k

)Dx 
n

Â
k=1

f (M

k

)Dx.

In other words,

Lower(n) 
n

Â
k=1

f (c
k

)Dx  Upper(n).

Taking limits

lim
n!•

Lower(n)  lim
n!•

n

Â
k=1

f (c
k

)Dx  lim
n!•

Upper(n). (1.6)

But Theorem 1.3.1 says the first and last limits are the same, so by the squeeze
theorem for limits, all three limits in (1.6) must be equal. That is,

THEOREM 1.3.2. Let f be a (non-negative) continuous function on the closed interval [a, b].
Then no matter how we select the sample points c

k

in each subinterval,

lim
n!•

Lower(n) = lim
n!•

n

Â
k=1

f (c
k

)Dx = lim
n!•

Upper(n).

Translation of Theorem 1.3.2. If f is a (non-negative) continuous function on the
closed interval [a, b], then we can use any convenient point c

k

in the kth subinterval
to evaluate f . . . we do not need to choose m

k

or M

k

where the min or max occurs.
Usually the most convenient point to choose is x

k

= a + kDx which is the right-
hand endpoint of the interval because this usually produces a simple summation
formula.

The other consequence of this result is that we can now define the area under a
continuous curve. Here we do need the function to be non-negative.
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DEFINITION 1.3.3. Let f be a non-negative, continuous function on the closed interval [a, b].
The area bounded above by the graph of f , below by the x-axis, on the left by the line x =
a, and on the right by x = b is given by

Area = lim
n!•

n

Â
k=1

f (c
k

)Dx,

where Dx = b�a

n

and c

k

is any point in the kth subinterval of the regular partition of [a, b]
into n subintervals.

EXAMPLE 1.3.4. Use Definition 1.3.3 to determine the area under the curve y = f (x) =
�x

2 + 4x � 3 on the interval [1, 3].

1 3
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...............................

..........................................................................................................................................................................................................................

Figure 1.18: The graph of the parabola
f (x) = �x

2 + 4x � 3 on [1, 3].

Solution. Notice in Figure 1.18 that because the f (x) is both increasing and de-
creasing on the interval, if we computed Upper(n), the max values of f would
sometimes occur at the right-hand endpoints and sometimes at the left. This
makes it hard to compute Upper(n) (or Lower(n)).

However, by Theorem 1.3.2, we can use any convenient set of evaluation points
for our Riemann sum. As noted earlier, right-hand endpoints x

k

are convenient
because the general formula is fairly simple. In this case

Dx =
b � a

n

=
3 � 1

n

=
2
n

and so
x

k

= a + kDx = 1 +
2k

n

.

So

f (x

k

) = f

✓
1 +

2k

n

◆
= �

✓
1 +

2k

n

◆2
+ 4

✓
1 +

2k

n

◆
� 3

= �
✓

1 +
4k

n

+
4k

2

n

◆
+

✓
+

8k

n

◆
� 3

=
4k

n

� 4k

2

n

2 .

The general form of the right-hand Riemann sum is:

Right(n) =
n

Â
k=1

f (x

k

)Dx.

In our case, using our work above

Right(n) =
n

Â
k=1

f (x

k

)Dx =
n

Â
k=1

✓
4k

n

� 4k

2

n

2

◆
2
n

=
8
n

2

n

Â
k=1

i � 8
n

3

n

Â
k=1

k

2

=
8
n

2

✓
n(n + 1)

2

◆
� 8

n

3

✓
n(n + 1)(2n + 1)

6

◆

=

✓
4 +

4
n

◆
�

✓
8
3
+

4
n

+
4

3n

2

◆

=
4
3
� 4

3n

2 .

By Definition 1.3.3 we have

Area = lim
n!•

Right(n) = lim
n!•

✓
4
3
� 4

3n

2

◆
=

4
3

.
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Cool!

YOU TRY IT 1.3 (Notation Practice). Fill in the following table for the Riemann sums using
regular partitions and right-hand endpoints. Do not try to evaluate the sums.

f (x) [a, b] Dx x

k

= a + kDx f (x

k

) Right(n) =
n

Â
k=1

f (x

k

)Dx

x

2 � 1 [0, 2]

2(x � 1)2 [1, 4]

sin(x) [0, p]

For f (x) = 2(x � 1)2 on [1, 4], use algebra to simplify Right(n) =
n

Â
k=1

f (x

k

)Dx.

Then calculate the area under f (x) = 2(x � 1)2 on [1, 4] by evaluating lim
n!•

Right(n).

answertoyoutryit1.3.Area=18.

Left-hand Riemann Sums. We have been working with right-hand Riemann sums.
But we could use left-hand endpoint sums instead. The the kth subinterval is
[x

k�1, x

k

], so its left-hand endpoint is x

k�1 = a + (i � 1)Dx. The form of a gen-
eral left-hand Riemann sum is

Left(n) =
n

Â
k=1

f (x

k�1)Dx.

Because the expression for the left-hand endpoint x

k�1 = a + (i � 1)Dx is more
awkward to substitute into a function, we will generally use right-hand endpoint
sums. However, notice that by adjusting the starting and ending indices of the
sum, we can make left-hand sums as simple as right:

Left(n) =
n

Â
k=1

f (x

k�1)Dx =
n�1

Â
k=0

f (x

k

)Dx. (1.7)

YOU TRY IT 1.4. Let f (x) = 2(x � 1)2. Determine the expression for Left(n) by adjusting
the indices using (1.7) above. Simplify the expression. Then calculate the area under f (x) =
2(x � 1)2 by evaluating lim

n!•
Left(n). and verify that you get the same area as for Right(n) in

You Try It 1.3

answertoyoutryit1.4.

Left(n)=
n�1

Âk=0
f(x

k)Dx=
n�1

Âk=0
2
✓

3k

n

◆2
3
n

=
54
n3

✓
(n�1)(n)(2n�1)

6

◆
=18�

27
n

+
9
n2.

Sotheareaislimn!•Left(n)=18.

YOU TRY IT 1.5. This problem asks you to extend what we have been doing above.

Functions with negative values. There’s no reason why in a Riemann sum
n

Â
k=1

f (c
k

)Dx the

function f (x) needs to be non-negative.

(a) Using the two graphs of f below, draw Lower(4) (the lower Riemann sum) and
Upper(4) (upper sum) and evaluate each. Note: some heights and ‘areas’ will be
negative!
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�2

�1

0

1

2

3

4

1 2 3 4

.........................................................................................................................................................................................................................................................................................................................................................................

Lower(4)

�2

�1

0

1

2

3

4

1 2 3 4

.........................................................................................................................................................................................................................................................................................................................................................................

Upper(4)

(b) Using the graph estimate Lower(4) and Upper(4). No summation formulæ are
needed.

(c) What do these sums represent geometrically?

(d) The function f (x) is a straight line in this problem. Figure out the equation of f (x).

(e) Why does the sum Lower(n) use right endpoints?

(f ) Set up and simplify Lower(n) thinking of it as Right(n).

(g) Evaluate lim
n!•

Lower(n). How is your answer related to the two triangles in the origi-
nal graph?

answertoyoutryit1.5.(a)ForUpper(4),noticethatthebasesoftherectanglesarealwayson
thexaxis,whichmaynotbethebottomofthegrid!!!

�2

�1

0

1

2

3

4

1234

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.......

Upper(4)

(b)U(4)=4·1+2.5·1+1·1+(�0.5)·1=7.0.

(c)Therectanglesbelowtheaxisproduce‘negative’area,sotheresultisnetarea,thatisareaabovethe
x-axisminustheareabelowit.

(d)f(x)=�3
2

x+4.

(e)f(x)isdecreasingsothelowestpointineachintervalisattherightend.

(f)Dx=4
n.x

k=4i

n.SimplifyingwegetLower(n)=
n

Âk=1

✓
�

3
2·

4i

n

+4
◆

4
n

=4�
12
n

.

(g)limn!•Lower(n)=4.

YOU TRY IT 1.6 (Putting it all together). Suppose that y = 2x + 2 on the interval [�2, 1].

(a) What is the formula for the right-hand Riemann sum Right(n)?

(b) Find lim
n!•

Right(n).

answertoyoutryit1.6.(a)Right(n)=
n

Âk=1


6i

n�2
�
·

3
n

.(b)limn!•Right(n)=3.

YOU TRY IT 1.7. Find the general formula for a regular right-hand Riemann sums Right(n)
for the following functions and intervals. Make sure to simplify f (x

k

). Then use the sum-
mation formulæ to simplify Right(n) as much as possible.

(a) f (x) = 4x

3 � 5 on [0, 2].

(b) f (x) = x

2 � x on [1, 4].

(c) Evaluate Right(100) for both Riemann sums above. Determine lim
n!•

Right(n) for each.
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answertoyoutryit1.7.(a)
n

Âk=1

"
4
✓

2i

n

◆3
�5

#
·

2
n

=6+
32
n

+
16
n2.(b)

n

Âk=1


9k2

n2+
3i

n

�
·

3
n

=

27
2

+
18
n

+
9

2n2.(c)For(a)Right(100)=6+0.32+0.0016=6.3216.For(b)Right(100)=13.5+

0.18+0.00045=13.68045.Takethelimits:(a)limn!•Right(n)=6;(b)limn!•Right(n)=13.5.

webwork: Click to try Problems 18 through 19. Use guest login, if not in my course.

1.4 The Definite Integral

Everything has worked out nicely, especially for right-hand Riemann sums using
regular partitions. But we started with very general Riemann sums of the form

n

Â
k=1

f (c
k

)Dx

k

. The next definition reverts back to this general setup.

DEFINITION 1.4.1. Let f be a function defined at each point in the closed interval [a, b]. Let
{x0, x1, . . . , x

n

} be a partition of [a, b] with

a = x0 < x1 < x2 < · · · < x

n�1 < x

n

= b.

Let Dx

k

= x

k

� x

k�1. Let c

k

be any sample point in the interval [x
k�1, x

k

]. If

lim
all Dx

k

! 0

n

Â
k=1

f (c
k

)Dx

k

exists, then we say that f is integrable on [a, b]. If the limit exists, it is denoted by

lim
all Dx

k

! 0

n

Â
k=1

f (c
k

)Dx

k

=
Z

b

a

f (x) dx,

where a and b are the lower and upper limits of integration. We say that the limit of the
Riemann sums, if it exists, is the definite integral of f from a to b.

This definition should remind you of indefinite integrals. There is a connection
that we will see a bit later.

Now in light of Theorem 1.3.2 about upper and lower sums of continuous func-
tions, the following result is not too surprising.

THEOREM 1.4.2 (Continuity implies Integrability). If f is continuous on [a, b], then f is integrable.

The proof of this result is hard. Take Math 331! But Theorem 1.3.2 provides the
intuition. Theorem 1.3.2 says that for continuous functions lim

n!• Upper(n) =

lim
n!• Lower(n) the upper and lower sums same value. Now these are sums

using regular partitions and as n ! •, we have that Dx ! 0. However, Defini-
tion 1.4.1 applies to any and all partitions. So the new theorem, Theorem 1.4.2, is
a much more general result than Theorem 1.3.2 and there is some work to do in
proving it.

Take-home Message. Theorem 1.4.2 says that if f is continuous, the limit for any
sequence of Riemann sums exists and we get the same number as long as the
widths Dx

k

of all subintervals go to 0. So to actually compute
R

b

a

f (x) dx we might
as well choose the most convenient partitions and sample points. Typically these are
right-hand Riemann sums where the partition is regular, so Dx = b�a

n

and c

k

= x

k

.

EXAMPLE 1.4.3. Determine
Z 2

�4

x

2
dx. �4 2
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Figure 1.19: The graph of f (x) = 1
2 x on

[�2, 4].
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Solution. f (x) = 1
2 x is continuous (it is polynomial, in fact linear), but it is not

non-negative. By Theorem 1.4.2 we know that f is integrable. To find the value of
the integral, we use a convenient Riemann sum, Right(n).

For n subintervals,

Dx =
b � a

n

=
2 � (�4)

n

=
6
n

x

k

= a + kDx = �4 +
6k

n

f (x

k

) =
x

k

2
= �2 +

3k

n

Look carefully at the drawing in Figure 1.20. The Riemann sum rectangles AL-
WAYS START on the x-axis and go up or down to the graph of f . They do not start
at the bottom of the picture. Notice that one of the rectangles happens to have a
height of 0.

�4 2
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...............
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...............

...............
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...............
...............
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...............

...............
...............

...............
...............

...............
...............

...............
...............

......

Figure 1.20: Right(n) for f (x) = 1
2 x on

[�2, 4].Right(n) =
n

Â
k=1

f (x

k

)Dx =
n

Â
k=1

f

✓
�4 +

6k

n

◆
· 6

n

=
6
n

n

Â
k=1

✓
�2 +

3k

n

◆

=
6
n

n

Â
k=1

�2 +
6
n

· 3
n

n

Â
k=1

i

=
6
n

(�2n) +
18
n

2

✓
n(n + 1)

2

◆

= �12 + 9 +
9
n

= �3 +
9
n

.

So Z 2

�4

x

2
dx = lim

n!•
Right(n) = lim

n!•
�3 +

9
n

= �3.

Notice that the answer to Example 1.4.3 is negative so it cannot represent an
ordinary area which must be non-negative. The integral represents the ‘net area:’
the area above the x-axis minus the area below the axis. In this case, the areas
above and below the x-axis are two triangles and we see that the difference in their
areas is

area above the axis � area below the axis = 1
2 (2)(1)�

1
2 (4)(2) = �3

which checks with the integral. Now we did not need Riemann sums to compute
net areas of triangles. But as soon as we have curved regions, integrals (using
Riemann sums) are the only method we have of computing such net areas.

Finally, when f is non-negative, the integral is equal to the area in the tradi-
tional sense. In other words, we have solved the area problem.

DEFINITION 1.4.4 (Area as an Integral). If f is continuous and non-negative on the closed in-
terval [a, b], then the area, then the area bounded above by f (x), below by the x-axis, and
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by the vertical lines x = a and x = b is

Area(under f ) =
Z

b

a

f (x) dx.

a b

.........
........
........
........
........
.........
..........
...........
.............
...................

...............................................................................
.................

.............
...........
.........
.........
........
........
........
........
........

.....................................

.....................................................................................................................................................................................

Area(under f ) =
R

b

a

f (x) dx

Figure 1.21: The definite integral solves
the area problem.

YOU TRY IT 1.8. Show that the area under the parabola y = f (x) = 1 � x

2 on the interval
[�1, 1] is 4

3 using
Z 1

�1
1 � x

2
dx = lim

n!•
Right(n).

webwork: Click to try Problems 20 through 27. Use guest login, if not in my course.


