
Sequences

Our ultimate goal by the end of the course is to approximate functions by using
polynomials with an infinite number of terms. Such approximations are what al-
lows your calculator to evaluate log, trig, and exponential functions (which are
types of transcendental functions1). Similar approximations are used in data com- 1 Roughly speaking, there are two types

of functions: algebraic and transcendental.
The algebraic functions are created
by using the elementary operations of
addition, subtraction, multiplication,
division, and root extraction. Transcen-
dental functions are all those functions
that are not algebraic. In other words, a
function which “transcends," i.e., cannot
be expressed in terms of, algebra.

pression so that your iPod can play music files that are relatively small. We want
to use polynomials rather than trig functions, logs, or exponentials because they
are easier to work with. The down side is that this forces us to deal with infinity,
or more precisely, limits of "infinite sums which turn out to be very interesting!

Introduction

Our first topic is sequences. You have probably seen sequences on SAT or IQ tests
where you had to figure out the next term or the general pattern. Here are several
examples.

EXAMPLE 12.0.1. See if you can figure out the next term and the general formula for the nth
term for each sequence or list of numbers.

a. 1, 1
2 , 1

4 , 1
8 , . . .

b. 1, 1
2 , 1

3 , 1
4 , . . .

c. 0, −1, 4, −9, 16, . . .

d. 0, 3
2 , 2

3 , 5
4 , 4

5 , 7
6 , 6

7 , . . .

e. 1, 2, 6, 24, 120, . . .

DEFINITION 12.0.2. A sequence of real numbers is a function f (n) whose domain is the set
of all positive integers n. Notation: Instead of using f (n) we usually use an and indicate the
entire sequence by {an}∞

n=1 or just {an}. More generally, a sequence can start with any in-
teger m in which case the domain consists of all integers n ≥ m. (m = 0 is a common start-
ing value.)

EXAMPLE 12.0.3 (Continued). Here
are the functions (formulæ) de-
scribing the sequences in Exam-
ple 12.0.1.

a. f (n) = 1
2n , n ≥ 0;

{
1
2n

}∞

n=0
.

b. an = 1
n , n ≥ 1;

{
1
n

}∞

n=1
.

c.
{
(−1)nn2}∞

n=0.

d.
{

1 + (−1)n

n

}∞

n=1
.

e. {n!}∞
n=1.

Sequences can be described in two ways. Often we will use an explicit formula
like we would with an ordinary function). For instance

EXAMPLE 12.0.4. The sequence {0, 1
2 , 2

3 , 3
4 , 4

5 , . . . } can be described in several ways. For

example, we might use an = f (n) = n−1
n for n ≥ 1, so the sequence would be

{
n−1

n

}∞

n=1
.

Here we can compute an explicitly from the given formula.
Such a formula is not unique. We might start with n = 0 and use bn = g(n) = n

n+1 for

n ≥ 0, so the sequence would be
{

n
n+1

}∞

n=0
.

Another way that sequences are defined is with a recurrence relation. We spec-
ify the first term of the sequence and give a general rule for computing the next
term of the sequence from the previous ones. For example,

a1 = 1, an+1 = a2
n − 1.
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The first few terms are
1, 0,−1, 0,−1, 0,−1, . . .

Another such sequences is the factorial sequence (function). . The function
n-factorial is denoted by n!. We define

a0 = 0! = 1, an+1 = (n + 1)! = n! · (n + 1)

So the first few terms are

0! = 1

1! = 0! · 1 = 1 · 1 = 1

2! = 1! · 2 = 1 · 2 = 2

3! = 2! · 3 = 1 · 2 · 3 = 6

4! = 3! · 4 = 1 · 2 · 3 · 4 = 24

You can see that we can also give an explicit formula for n!:

n! = 1 · 2 · · · n

For example, 5! = 1 · 2 · 3 · 4 · 5 = 120.

YOU TRY IT 12.1. The factorial function gets large very fast. Try some values on your calcu-
lator. What is the smallest value of n so that n! > 1, 000, 000?

Though we don’t often do it, we can graph sequences. Here are some examples.
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Caution: One important thing to notice: These sequences (functions) are not con-
tinuous because they are not defined on intervals. Their graphs are just an infinite
series of dots, one for each integer in the domain of the sequence.

Limits of Sequences

In some of the graphs above, as n gets large, the terms in the sequence seem to be

approaching a particular value. For example the next to last sequence
{

4n

n!

}∞

n=1
appears to approach 0 as n gets large. On the other hand, {sin n}∞

n=1 does not ap-
pear to approach any particular value as n gets large. We can adapt the language
of limits to this situation.

DEFINITION 12.0.5 (Informal). A sequence {an}∞
n=1 has a limit L if we can make an arbitrar-

ily close to L by taking n sufficiently large. We denote this by writing

lim
n→∞

an = L.

EXAMPLE 12.0.6. Here’s a familiar sequence from ‘back in the day’ when we were working
with Riemann sums.

(a) Let

{un}∞
n=1 =

{
n(n + 1)

2n2

}∞

n=1
.
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We evaluate this limit easily by using a bit of algebra (or use l’Hôpital’s rule):

lim
n→∞

un = lim
n→∞

n(n + 1)
2n2 = lim

n→∞

n + 1
2n

= lim
n→∞

1 + 1
n

2
=

1 + 0
2

=
1
2

.

Another way to solve algebraic limits at infinity like this one is to focus on the
highest powers in algebraic or rational functions.

lim
n→∞

un = lim
n→∞

n(n + 1)
2n2 = lim

n→∞

n2 + n
n2

HPwrs
= lim

n→∞

n2

2n2 =
1
2

.

Still another way is to use l’Hôpital’s rule, but see Theorem 12.0.7.

(b) Another similar example we saw was

{an}∞
n=1 =

{
n(n + 1)(2n + 1)

6n3

}∞

n=1
.

Since this is an algebraic limit at infinity, let’s use highest powers:

lim
n→∞

an = lim
n→∞

n(n + 1)(2n + 1)
6n3 = lim

n→∞

(n + 1)(2n + 1)
6n2

= lim
n→∞

2n2 + 3n + 1
6n2

HPwrs
= lim

n→∞

2n2

6n2 =
1
3

.

(c) Here’s a ‘backwards’ sequence as an illustration of how general the sequence
concept is: The index goes backwards to −∞. Let

{an}∞
n=1 =

{√
5n2 + n + 1

2n + 3

}−∞

n=−1

.

Since this is a limit at infinity, we can focus on the ‘highest powers’ to simplify
the limit:

lim
n→−∞

an = lim
n→−∞

√
5n2 + n + 1

2n + 3
HPwrs
= lim

n→−∞

√
5n2

2n
.

Now here is where you need to be very careful: Remember that
√

x2 = |x|,
NOT x. (Try a few negative values of x to see why.) Further, when x is negative,
|x| = −x. So continuing the calculation above, since the n-values are negative

lim
n→−∞

an = lim
n→−∞

√
5n2

2n
= lim

n→−∞

|n|
√

5
2n

= lim
n→−∞

−n
√

5
2n

= −
√

5
2

.

YOU TRY IT 12.2. Return to the graphs of the sequences given earlier. By inspecting the
graphs (no calculations), which appear to have limits and which do not?

The following do not have limits:
{(−1)n}∞

n=1, {ln n}∞
n=1, {sin n}∞

n=1,{(
−1 + 1

n

)n}∞

n=1
.

Some sequence limits are more challenging. Consider the sequence {an}∞
n=1 ={

ln n
n

}∞

n=1
. Does it have a limit? We might try to evaluate

lim
n→∞

ln n
n

by using l’Hôpital’s rule. However, to apply l’Hôpital’s rule the numerator and
denominator of the sequence need to be differentiable. But in a sequence, these
functions are not even continuous, let alone differentiable. Fortunately there is a
way around this.

THEOREM 12.0.7 (Key Fact). Suppose that f is a function so that lim
x→∞

f (x) = L. If an is a se-

quence such that f (n) = an for all integers n in the domain of the sequence, then lim
n→∞

an =

L, too.

Essentially this says that if we can ‘convert’ a sequence to a corresponding func-
tion of x and evaluate the resulting limit, then the sequence has the same limit as
the function.
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EXAMPLE 12.0.8. Return to the sequence {an}∞
n=1 =

{
ln n

n

}∞

n=1
. The sequence can be de-

scribed by the formula an = f (n) = ln n
n . So if we let f (x) = ln x

x (for x > 0), then we can try
to evaluate the limit as x → ∞ using any method from Calculus I. 0

1

0 5 10 15 20

•
• • • • • • • • • • • • • • • • • • •

....
.....
.....
......
........
......................................................................................................................................................................................................................................................................................................................

Figure 12.1: The sequence
{

ln n
n

}∞

n=1
and the function f (x) = ln x

x that
‘connects the dots.’ Both appear to have
the same limit at infinity.

In particular we can apply l’Hôpital’s rule:

lim
x→∞

ln x
x

= lim
x→∞

1
x
1
=

0
1
= 0.

Therefore by the Key Fact Theorem 12.0.7 above,

lim
n→∞

an = lim
n→∞

ln n
n

= 0,

also!

YOU TRY IT 12.3. Here are several that you should try now. Many of these will look familiar
from our recent work with l’Hôpital’s rule.

(a) lim
n→∞

2n
n + 1

.

(b) lim
n→∞

1− n2

6n + 7
.

(c) lim
n→∞

en

n2 + 1
.

(d) lim
n→∞

(1 + 2n)1/n.

(e) lim
n→∞

ln
√

n
n

.

(f ) lim
n→∞

(
√

n)1/n.

(g) lim
n→∞

(
1− 1

n

)n/2
.

(h) lim
n→∞

(ln(3n + 5)− ln(4n + 6)).

answertoyoutryit12.3.(a)2;(b)DNE(−∞);(c)DNE(+∞);(d)1;(e)0;(f)1;(g)e−1/2;(h)
ln(3/4).

webwork: Click to try Problems 132 through 135. Use guest login, if not in my course.
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Important Limits

The sequence
{(

1 + k
n

)n}∞

n=1

Finding the limit of the sequence
{(

1 + k
n

)n}∞

n=1
should remind you of some

earlier work we did with l’Hôpital’s rule. Notice that lim
n→∞

(
1 +

k
n

)n
has the inde-

terminate form 1∞. To determine limits of this form, it is useful to use the natural
log function.

Let y = lim
n→∞

(
1 + k

n

)n
. Taking the logs of both sides and switching the order of

the limit and the log (the log function is continuous) we get:

ln y = ln lim
n→∞

(
1 +

k
n

)n
= lim

n→∞
ln
(

1 +
k
n

)n
= lim

n→∞
n ln

(
1 +

k
n

)
.

To evaluate the limit we switch to the continuous variable x and put the limit in 0
0

indeterminate form so that we can eventually use l’Hôpital’s rule.

ln y = lim
x→∞

x ln
(

1 +
k
x

)
= lim

x→∞

ln
(

1 + k
x

)
1
x

= lim
x→∞

1
1+ k

x
·
(
− k

x2

)
− 1

x2

= lim
x→∞

k
1 + k

x
=

k
1 + 0

= k.

Since ln y = k, then y = ek which means that lim
n→∞

(
1 + k

n

)n
= ek.

The sequence
{

n1/n}∞
n=1

This time lim
n→∞

n1/n or lim
n→∞

n
√

n has the indeterminate form ∞0. We use the same

method as in the previous situation. Let y = lim
n→∞

n1/n. Then

ln y = ln lim
n→∞

n1/n = lim
n→∞

ln n1/n = lim
n→∞

ln n
n

.

To evaluate the limit we switch the the continuous variable x and use l’Hôpital’s
rule since the limit is now in the indeterminate form ∞

∞ .

ln y = lim
x→∞

ln x
x

= lim
x→∞

1
x
1
= 0.

Since ln y = 0, then y = e0 = 1 which means that lim
n→∞

n1/n = lim
n→∞

n
√

n = 1.

The sequence
{ n!

nn

}∞
n=1

This sequence is a little simpler to deal with: Notice that

0 ≤ n!
nn =

1 · 2 · 3 · · · (n− 1) · n
n · n · n · · · n · n =

1
n
· 2 · 3 · · · (n− 1) · n

n · n · · · n · n ≤ 1
n
· 1.

This means that
0 ≤ n!

nn ≤
1
n

.

So taking limits and applying the squeeze theorem we obtain

lim
n→∞

0 ≤ lim
n→∞

n!
nn ≤ lim

n→∞

1
n
⇒ 0 ≤ lim

n→∞

n!
nn ≤ 0.

Therefore, lim
n→∞

n!
nn = 0.

YOU TRY IT 12.4. Give an argument that shows lim
n→∞

nn

n!
= ∞ (diverges). Hint: Show that

nn

n! > n.
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Sequences of the form {rn}∞
n=1

For each fixed real number r, we can form the sequence {rn}∞
n=1. For some values

of r, the sequence converges and for others it does not.

EXAMPLE 12.0.9. By inspection we see that

(a)
{(

1
2

)n}∞

n=1
=

{
1
2

,
1
4

,
1
8

,
1
16

, . . .
}

and so lim
n→∞

(
1
2

)n
= 0.

(b)
{(
−1

4

)n}∞

n=1
=

{
−1

4
,

1
16

,− 1
64

, . . .
}

and so lim
n→∞

(
−1

4

)n
= 0.

(c) {2n}∞
n=1 = {2, 4, 8, 16, . . . } and so lim

n→∞
(2)n diverges to +∞.

(d)
{
(−3)n}∞

n=1 = {−3, 9,−27, 81, . . . } and so lim
n→∞

(−3)n diverges.

(e) {1n}∞
n=1 = {1, 1, 1, 1, . . . } and so lim

n→∞
(1)n = 1.

(f )
{
(−1)n}∞

n=1 = {−1, 1,−1, 1, . . . } and so lim
n→∞

(−1)n diverges.

We see that if |r| < 1 then the powers of r get small and converge to 0. If |r| > 1, then the
powers of r get large (without bound) in magnitude and so the sequence diverges. This is
summarized below.

Summary of Key Limits

You should know and be able to use all of the following limits.

THEOREM 12.0.10. Summary of important limits.

(a) lim
n→∞

(
1 + k

n

)n
= ek. In particular lim

n→∞

(
1 + 1

n

)n
= e.

(b) lim
n→∞

n1/n = lim
n→∞

n
√

n = 1.

(c) lim
n→∞

n!
nn = 0 and lim

n→∞

nn

n!
= ∞ (diverges).

(d) Consider the sequence {rn}∞
n=1, where r is a real number.

1. If |r| < 1, then lim
n→∞

rn = 0;

2. If r = 1, then lim
n→∞

rn = 1;

3. Otherwise lim
n→∞

rn does not exist (diverges).

EXAMPLE 12.0.11. These Key Limits may be used with some algebraic techniques.

(a) lim
n→∞

(
1 +

2
n

)n/3
= lim

n→∞

[(
1 +

2
n

)n]1/3

= [e2]1/3 = e2/3.

(b) lim
n→∞

n4/n = lim
n→∞

[
n1/n

]4
= [1]4 = 1.

(c) lim
n→∞

(
3
5

)6n
= lim

n→∞

[(
3
5

)n]6

= [0]6 = 0.

(d) lim
n→∞

(−3)2n · 7−n = lim
n→∞

[(−3)2]n

7n = lim
n→∞

9n

7n = lim
n→∞

(
9
7

)n
Diverges.

A final note about sequences. It should be clear that

if lim
n→∞

an = L then lim
n→∞

an+1 = L and lim
n→∞

an−1 = L (12.1)

since the terms in the infinite tails of the sequences are the same.
webwork: Click to try Problems 136 through 137. Use guest login, if not in my course.

12.1 Problems
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1. (a) List the first four terms of the sequence
{

n+1
3n−1

}∞

n=1
.

(b) Find a formula for an for the sequence { 1
2 , 1

4 , 1
6 , 1

8 , . . . }.
(c) Find a formula for an for the sequence { 1

4 , 2
9 , 3

16 , 4
25 , . . . }.

2. Determine whether the sequence converges or diverges. If it converges, find the limit.

Use l’Hôpital’s rule where appropriate. Use log properties for (d).

(a)
{ √

n
1 + n

}∞

n=1
(b)

{(
1 +

2
n

)n}∞

n=1
(c)

{
ln n2

n

}∞

n=1
(d) {ln(2n + 1)− ln(3n)}∞

n=1

3. Find these limit (if they exists):

(a) {an}∞
n=1 =

{
1

n2 +
2

n2 +
3

n2 + · · ·+ n
n2

}∞

n=1
(b) {an}∞

n=2 =

{∫ ∞

1

1
xn dx

}∞

n=2

4. Find the limits of these sequences. Use the key limits when possible.

(a)
{(

1 +
3
n

)n}∞

n=1
(b)

{
ln(2n2 + 7)− ln(5n2 + n)

}∞

n=1
(c)

{
2 ln(n + 1)

n2

}∞

n=1

(d)
{(

2
3

)n}∞

n=1
(e)
{(
−3
2

)n}∞

n=1
(f )

{
4n2 − 3n + 1

5n2 + 7

}∞

n=1

5. Find the limits of the following sequences.

(a)
{

3n
n + 1

}∞

n=1
(b)

{
1− n2

6n + 7

}∞

n=1
(c)

{
en

n2 + 1

}∞

n=1

(d)
{
(1 + 2n)

1
n

}∞

n=1
(e)
{

ln
√

n
n

}∞

n=1
(f )

{
(
√

n)
1
n

}∞

n=1
(g)

{(
1− 1

n

) n
2
}∞

n=1

12.2 Terminology for Sequences

There are a few more basic terms that will be used to describe sequences, terms
which are similar to those used for more general functions.

DEFINITION 12.2.1. A sequence {an}∞
n=1 is non-decreasing if each term is at least a big as

its predecessor: an+1 ≥ an for all n. Similarly, it is non-increasing if an+1 ≤ an for all n.
A sequence that is either non-decreasing or non-increasing is said to be monotonic.

Three simple examples illustrate the idea:

{an}∞
n=1 =

{
1 +

1
n

}∞

n=1
= {2, 3/2, 4/3, 5/4, . . . }

is non-increasing while

{bn}∞
n=1 =

{
1− 1

n

}∞

n=1
= {0, 1/2, 2/3, 3/4, 4/5, . . . }

is non-decreasing. The sequence

{cn}∞
n=1 = {(−1)n}∞

n=1 = {−1, 1,−1, 1,−1, . . . }

is neither non-increasing nor non-decreasing, so it is not monotonic.

YOU TRY IT 12.5. Look back to the sequences that were plotted beginning of this section
and pick out the the non-increasing and the non-decreasing ones and those that were not
monotonic.
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One method to verify that a sequence {an}∞
n=1 is monotonic is to make use of

the derivative function. Suppose that an = f (n) for all n and the corresponding
function f (x) is differentiable on [1, ∞). If the derivative f ′(x) ≥ 0 for all x in
[1, ∞), then both the function f (x) and the corresponding sequence {a}∞

n=1 are
non-decreasing. Likewise, if the derivative f ′(x) ≤ 0 for all x in [1, ∞), then both
the function f (x) and the corresponding sequence {a}∞

n=1 are non-increasing. In
either case the sequence is monotonic.

EXAMPLE 12.2.2. Consider the following sequences.

(a) {an}∞
n=1 =

{
1 +

1
n

}∞

n=1
. Then the corresponding function is f (x) = 1 + 1

x . Notice that

f ′(x) = − 1
x2 < 0 for all x in [1, ∞). So the sequence is monotonic (decreasing).

(b) {an}∞
n=1 =

{(
1
2

)n}∞

n=1
. Then the corresponding function is f (x) =

(
1
2

)x
. The

derivative is f ′(x) = ln
(

1
2 )(

1
2

)x
. The natural log of any positive number smaller

than 1 is negative. So f ′(x) < 0 for all x in [1, ∞). So the sequence is monotonic
(decreasing).

(c) {an}∞
n=1 =

{
ln n

n

}∞

n=1
. Then the corresponding function is f (x) = ln x

x . The derivative

using the quotient rule is

f ′(x) =
1
x · x− ln x

x2 =
1− ln x

x2 .

Since ln x > 1 for x > e, we see that f (x) is decreasing for x > e and increasing
for x < e. This translates to the sequence being decreasing for n ≥ 3 and increasing
for n = 1, 2. So it is not monotonic. However, it is eventually monotonic since it is
increasing for all n ≥ 3.

DEFINITION 12.2.3. A sequence {an}∞
n=1 is bounded if there is some number M so that |an| ≤

M for all n.

The three simple sequences mentioned earlier are bounded. For

{an}∞
n=1 =

{
1 +

1
n

}∞

n=1
= {2, 3/2, 4/3, 5/4, . . . }

notice |an| ≤ 2. For

{bn}∞
n=1 =

{
1− 1

n

}∞

n=1
= {0, 1/2, 2/3, 3/4, 4/5, . . . }

notice |bn| ≤ 1 and for

{cn}∞
n=1 = {(−1)n}∞

n=1 = {−1, 1,−1, 1,−1, . . . }

we have |cn| ≤ 1. Observe that we could have used larger bounds for each, e.g.,
|an| ≤ 12.

From our perspective, the most important fact is that

THEOREM 12.2.4. If a sequence {an}∞
n=1 is both monotone and bounded, then it converges.

This is a hard theorem to prove and requires a more advanced understanding of
the real numbers. Take Math 331.
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As an example, the sequences {an}∞
n=1 and {bn}∞

n=1 above were both monotone
and bounded and both converge:

lim
n→∞

an = lim
n→∞

1 +
1
n
= 1

while
lim

n→∞
bn = lim

n→∞
1− 1

n
= 1.
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