
Series: Infinite Sums

Series are a way to make sense of certain types of infinitely long sums. We will
need to be able to do this if we are to attain our goal of approximating transcen-
dental functions by using ‘infinite degree’ polynomials. But before we try to add
together an infinite number of polynomials, we first explore what it means to add
an infinite number of numbers.

Here’s the issue: We know how to add two numbers: a1 + a2. Using associativity
(and parentheses) we can add three numbers

a1 + (a2 + a3)

four numbers
a1 + (a2 + (a3 + a4))

or even n numbers

a1 + (a2 + (a3 + (a4 + (· · ·+ (an�1 + an) . . . )))).

But where would we start (or end) when trying to add an infinite number of
terms? And does the sum add up to a finite number or not? Since all we know
how to do is add a finite number of terms, we will have to use finite addition and
limits to make sense of the process.

13.1 Introduction to Series

OK, enough of this finite stuff. What we want to do is add up the terms of an
infinite sequence {an}•

n=1. More precisely, given a sequence {an}•
n=1, we can form

the infinite sum

a1 + a2 + a3 + · · ·+ an + · · · =
•

Â
k=1

ak

which is called an infinite series or more simply just a series.
Can we do this? Here are several examples.

(a)
•

Â
k=1

k = 1 + 2 + 3 + 4 + · · · = •. The sum is clearly not finite; the series

diverges.

(b)
•

Â
k=1

1
k
= 1 +

1
2
+

1
3
+

1
4
+ · · · . Do these terms add up to a finite sum?

(c)
•

Â
n=0

1
2n = 1 +

1
2
+

1
4
+

1
8
+ · · · . Do these terms add up to a finite sum?

(d)
•

Â
n=0

1
(�2)n = 1� 1

2
+

1
4
� 1

8
+ · · · . Do these terms add up to a finite sum?
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DEFINITION 13.1.1. To find the sum of an infinite series Â•
k=1 ak we form the sequence of

partial sums that are often denoted by Sn.

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3

...

Sn = a1 + a2 + a3 + · · ·+ an =
n

Â
k=1

ak (Sn is called the nth partial sum of the series)

If the sequence of partial sums {Sn}•
n=1 has a limit a limit L (converges), we say that the se-

ries converges to L and we write:

•

Â
k=1

ak = lim
n!•

n

Â
k=1

ak = lim
n!•

Sn = L

or just
•

Â
k=1

ak = L.

Otherwise the series diverges.

EXAMPLE 13.1.2. Here’s a simple example. Find the sum of the series

•

Â
k=1

1
2k =

1
2
+

1
4
++

1
8
+

1
16

+ · · · ,

if it exists.

Solution. We first determine each partial sum and then rewrite it in a more
convenient form.

S1 =
1
2
= 1 � 1

2

S2 =
1
2
+

1
4
=

3
4
= 1 � 1

4

S3 =
1
2
+

1
4
+

1
8
=

7
8
= 1 � 1

8
...

Sn =
1
2
+

1
4
+

1
8
+ · · · 1

2n = 1 �
✓

1
2

◆n

So the sequence of partial sums is {Sn}•
n=1 =

n

1 �
⇣

1
2

⌘no•

n=1
and

lim
n!•

Sn = lim
n!•

1 �
⇣

1
2

⌘n
= 1 � 0 = 1,

where we have used a Key Limit to evaluate the limit. In other words,

•

Â
k=1

1
2k = 1.

Pretty cool!

EXAMPLE 13.1.3. Here’s a another fun example. Find the sum of the series
•

Â
k=1

1
k2 + k

if it

exists.
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Solution. Using partial fractions (check this)

•

Â
k=1

1
k2 + k

=
•

Â
k=1

✓

1
k
� 1

k + 1

◆

=

✓

1 � 1
2

◆

+

✓

1
2
� 1

3

◆

+

✓

1
3
� 1

4

◆

+

✓

1
4
� 1

5

◆

+ · · ·

Notice that most of the terms cancel out. The sum collapses and we see that

Sn =

✓

1 � 1
2

◆

+

✓

1
2
� 1

3

◆

+

✓

1
3
� 1

4

◆

+

✓

1
4
� 1

5

◆

+ · · ·+
✓

1
n
� 1

n + 1

◆

= 1� 1
n + 1

.

Such a sum is called a telescoping sum. We are left with only the first and last
terms in the partial sum. This time

lim
n!•

Sn = lim
n!•

1 � 1
n + 1

= 1 � 0 = 1.

In other words,
•

Â
k=1

1
k2 + k

= 1.

YOU TRY IT 13.1. Try this telescoping sum. Find the sum of the series
•

Â
k=1

✓

1
k
� 1

k + 2

◆

if it

exists. This time there will be a few more terms that do not cancel. See if you can figure it
out.

EXAMPLE 13.1.4 (Partial Fractions). Here’s another example that uses partial fractions. Find

the sum of the series
•

Â
k=0

4
k2 + 3k + 2

if it exists.

Solution. Since the degree of the numerator is smaller than the degree of the
denominator a nd since the denominator factors into linear factors, we can write

4
k2 + 3k + 2

=
4

(k + 1)(k + 2)
=

A
k + 1

+
B

k + 2
=

Ak + 2A + Bk + B
(k + 1)(k + 2)

.

Solving we get:
k’s : 0 = A + B. (13.1)

and
constants : 4 = 2A + B. (13.2)

Subtracting (13.1) from (13.2) gives

4 = A. (13.3)

Putting A = 4 in (13.1) makes B = �4. So we see that

4
k2 + 3k + 2

=
4

k + 1
� 4

k + 2
.

(Check that this is correct!) This means that

•

Â
k=0

4
k2 + 3k + 2

=
•

Â
k=0

✓

4
k + 1

� 4
k + 2

◆

which is another telescoping series. This time

Sn =

✓

4
1
� 4

2

◆

+

✓

4
2
� 4

3

◆

+

✓

4
3
� 4

4

◆

+ · · ·+
✓

4
n + 1

� 4
n + 2

◆

= 4 � 4
n + 2

.
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So
lim

n!•
Sn = lim

n!•
4 � 4

n + 2
= 4 � 0 = 4.

In other words,
•

Â
k=0

4
k2 + 3k + 2

= 4.

Wow!

EXAMPLE 13.1.5 (Telescoping). Here’s a more complicated example that uses partial fractions.

Find the sum of the series
•

Â
k=1

ln
(k + 1)

k
if it exists.

Solution. We can use a log property to rewrite the partial sum as

Sn =
n

Â
k=1

ln
✓

k + 1
k

◆

=
n

Â
k=1

ln(k + 1)� ln k

= (ln 2 � ln 1) + (ln 3 � ln 2) + (ln 4 � ln 3) + · · ·+ [ln(n + 1)� ln n]

= ln(n + 1)� ln 1

= ln(n + 1).

Therefore
lim

n!•
Sn = lim

n!•
ln(n + 1) = • (diverges)

and the series
•

Â
k=1

ln
✓

k + 1
k

◆

diverges.

EXAMPLE 13.1.6 (Partial Fractions). Here’s a more complicated example that uses partial

fractions. Find the sum of the series
•

Â
k=0

8
k2 + 4k + 3

if it exists.

Solution. Since the degree of the numerator is smaller than the degree of the
denominator a nd since the denominator factors into linear factors, we can write

8
k2 + 4k + 3

=
4

(k + 1)(k + 3)
=

A
k + 1

+
B

k + 3
=

Ak + 3A + Bk + B
(k + 1)(k + 3)

.

Solving we get:
k’s : 0 = A + B. (13.4)

and
constants : 8 = 3A + B. (13.5)

Subtracting (13.4) from (13.5) gives

8 = 2A. (13.6)

Putting A = 4 in (13.4) makes B = �4. So we see that

8
k2 + 4k + 3

=
4

k + 1
� 4

k + 3
.

This means that
•

Â
k=0

8
k2 + 4k + 3

=
•

Â
k=0

✓

4
k + 1

� 4
k + 3

◆
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which is another telescoping series.

Sn =
⇣

4
1 � 4

3

⌘

+
⇣

4
2 � 4

4

⌘

+
⇣

4
3 � 4

5

⌘

+
⇣

4
4 � 4

5

⌘

+ · · ·

· · ·+
⇣

4
n�1 � 4

n+1

⌘

+
⇣

4
n � 4

n+2

⌘

+
⇣

4
n+1 � 4

n+3

⌘

Sn = 4 + 2 � 4
n+2 � 4

n+3 .

So
lim

n!•
Sn = lim

n!•
6 � 4

n + 2
� 4

n + 3
= 6.

In other words,
•

Â
k=0

8
k2 + 4k + 3

= 6.

YOU TRY IT 13.2 (Partial fractions). Here are two others that are similar to the last example
in that they use partial fractions. See if you can solve them. Find the sums of these series if
they exist.

(a)
•

Â
k=0

1
k2 + 7k + 12

(b)
•

Â
k=0

1
k2 + 4k + 3

answertoyoutryit13.2.(a)1
4;(b)3

2.

webwork: Click to try Problems 138 through 140. Use guest login, if not in my course.
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13.2 Geometric Series

Geometric series are among the simpler with which to work. We will see that we
can determine which ones converge and what their limits are fairly easily.

DEFINITION 13.2.1. A geometric series is a series that has the form

a + ar + ar2 + ar3 + · · · =
•

Â
n=0

arn,

where a is the first term and r is called the ratio.

YOU TRY IT 13.3. Here are a few examples. Identify a and r in each.

(a)
•

Â
n=0

6 · 4n (b)
•

Â
n=0

1
2n (c)

•

Â
n=0

2 · 3�n (d)
•

Â
n=2

5 ·
✓

�2
3

◆n
(e)

•

Â
n=1

2 ·
✓

1
3

◆2n

answertoyoutryit13.3.(a)6and4;(b)1and1/2;(c)2and1/3;(d)a=20/9andr=�2/3;(e)
a=2/9andr=1/9.

Determining the sum of a geometric series
•

Â
n=0

arn is relatively simple. We begin

by comparing the nth partial sum Sn with rSn. We find:

Sn = a + ar + ar2 + ar3 + · · ·+ arn (13.7)

rSn = ar + ar2 + ar3 + · · ·+ arn + arn+1 (13.8)

So subtracting (13.8) from (13.7) we obtain

Sn � rSn = a � arn�1

or

(1 � r)Sn = a(1 � rn+1).

So

Sn =
a(1 � rn+1)

1 � r
. (13.9)

We know from the Key Limit Theorem 13.2 that

lim
n!•

rn =

8

>

>

<

>

>

:

0 if |r| < 1

1 if r = 1

diverges otherwise.

(13.10)

Thus, putting (13.9) and (13.10) together we find

lim
n!•

Sn = lim
n!•

a(1 � rn+1)
1 � r

=

8

<

:

a
1�r if |r| < 1

diverges otherwise.

So we have proved

THEOREM 13.2.2 (Geometric Series Test). If |r| < 1, then the geometric series
•

Â
n=0

arn converges

and
•

Â
n=0

arn =
a

1 � r
.

Series.tex Version: Mitchell-2015/11/12.20:00:49



math 131 infinite series, part i: introduction 7

If |r| � 1, then the geometric series
•

Â
n=0

arn diverges.

EXAMPLE 13.2.3. Here are some examples that get progressively more complex.

(a) Find the sum of the series
•

Â
n=0

✓

2
5

◆n
if it exists.

Solution. In this example a = 1 and r = 2
5 and |r| < 1. So by Theorem 13.2.2 the

series converges to 1
1� 2

5
= 5

3 .

(b) Find the sum of the series
•

Â
n=0

4
✓

6
7

◆n
if it exists.

Solution. In this example a = 4 and r = 6
7 and |r| < 1. So by Theorem 13.2.2 the

series converges to 4
1� 6

7
= 28

1 = 28.

(c) Find the sum of the series
•

Â
n=0

2
✓

3
2

◆n
if it exists.

Solution. In this example a = 2 and r = 3
2 . Since |r| > 1, by Theorem 13.2.2 the

series diverges.

(d) Find the sum of the series
•

Â
n=0

5
✓

�1
2

◆n+2
if it exists.

Solution. Before we can apply the Geometric Series Test, we have to adjust the
power. Notice that we can rewrite the series using the nth power using

•

Â
n=0

5
✓

�1
2

◆n+2
=

•

Â
n=0

5
✓

�1
2

◆2 ✓

�1
2

◆n
=

•

Â
n=0

5
4

✓

�1
2

◆n
.

Now a = 5
4 and r = � 1

2 and |r| < 1. So by Theorem 13.2.2 the series converges to
5
4

1�(� 1
2 )

=
5
4
3
2
= 5

6 .

Solution. Alternative Method. Another way that we can approach this prob-
lem is to write out the first few terms of the series and identify a and r.

•

Â
n=0

5
✓

�1
2

◆n+2
=

5
4
|{z}

a

� 5
8
|{z}

ar

+
5

16
|{z}

ar2

� 5
32
|{z}

ar3

+ · · · .

Now a = 5
4 and the ratio of a term to the previous one is r = � 1

2 and |r| < 1. So

by Theorem 13.2.2 the series converges to
5
4

1�(� 1
2 )

=
5
4
3
2
= 5

6 . I find this easier!

(e) Find the sum of the series Â
n=2

2
✓

1
3

◆n
if it exists.

Solution. We use the Alternative Method. Write out the first few terms of the
series and identify a and r.

Â
n=2

2
✓

1
3

◆n
=

2
9
|{z}

a

+
2

27
|{z}

ar

+
2
81
|{z}

ar2

+
2

243
|{z}

ar3

+ · · · .

Now a = 2
9 and the ratio of a term to the previous one is r = 1

3 and |r| < 1. So by

Theorem 13.2.2 the series converges to
2
9

1�( 1
3 )

=
2
9
2
3
= 1

3 .

Some series start at n = 1 or n = 2 or some other index n 6= 0. For instance,

consider the general series
•

Â
n=2

an. We can write it as a series starting at n = 0 if we

are careful to also subtract off the first two terms:
•

Â
n=2

an =

 

•

Â
n=0

an

!

� (a0 + a1).
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We can apply this to geometric series.

EXAMPLE 13.2.4. Here are a two more examples.

(a) Find the sum of the series
•

Â
n=3

✓

2
3

◆n
if it exists.

Solution. First rewrite the series adding back and then subtracting the first few
‘missing’ terms.

•

Â
n=3

✓

2
3

◆n
=

 

•

Â
n=0

✓

2
3

◆n
!

�
✓

1 +
2
3
+

4
9

◆

.

By Theorem 13.2.2 the series converges to 1
1� 2

3
�
⇣

1 + 2
3 + 4

9

⌘

= 3 � 19
9 = 8

9 .

Alternative Method. Write out the first few terms of the series and identify a and
r.

•

Â
n=3

✓

2
3

◆n
=

8
27
|{z}

a

+
16
81
|{z}

ar

+
32

243
|{z}

ar2

+
64

729
|{z}

ar3

+ · · · .

Now a = 8
27 and the ratio of a term to the previous one is r = 2

3 and |r| < 1. So

by Theorem 13.2.2 the series converges to
8

27
1�( 2

3 )
= 8

9 .

(b) Find the sum of the series
•

Â
n=2

4
✓

�1
3

◆n
if it exists.

Solution. First rewrite the series; be careful of the signs.

•

Â
n=2

4
✓

�1
3

◆n
=

 

•

Â
n=0

4
✓

�1
3

◆n
!

�
✓

4 � 4
3

◆

.

By Theorem 13.2.2 the series converges to 4
1�(� 1

3 )
�
⇣

4 � 4
3

⌘

= 3 � 8
3 = 1

3 .

Alternative Method. Write out the first few terms of the series and identify a and
r.

•

Â
n=2

4
✓

�1
3

◆n
=

4
9
|{z}

a

� 4
27
|{z}

ar

+
4
81
|{z}

ar2

� 4
243
|{z}

ar3

+ · · · .

Now a = 4
9 and the ratio of a term to the previous one is r = 1

3 and |r| < 1. So by

Theorem 13.2.2 the series converges to
4
9

1�(� 1
3 )

= 1
3 .

webwork: Click to try Problems 141) through 146. Use guest login, if not in my course.

(Optional) Application: Repeating Decimals

You may (or may not) remember from your high school math days that every
repeating decimal can be expressed as a rational number, that is, as a fraction
using integers. There are some familiar ones such as

0.3333 · · · = 0.3 =
1
3

.

Similarly we have Note: We use a horizontal bar to
indicate which part of the decimal
repeats.0.6666 · · · = 0.6 =

2
3

and
0.1111 · · · = 0.1 =

1
9

.
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But what about something like 0.12 = 0.121212 . . . ? We can write any such expres-
sion as a geometric series. In this case

0.12 = 0.121212 . . . = 0.12 + 0.0012 + 0.000012 + · · ·

=
12

(10)2 +
12

(10)4 +
12

(10)6 +
12

(10)8 + · · ·

=
12

(10)2

✓

1 +
1

(10)2 +
1

(10)4 +
1

(10)6 + · · ·
◆

=
12

(10)2

 

1 +
1

(10)2 +

✓

1
(10)2

◆2
+

✓

1
(10)2

◆3
+ · · ·

!

=
12
100

 

1 +
1

100
+

✓

1
100

◆2
+

✓

1
100

◆3
+ · · ·

!

=
•

Â
n=0

12
100

✓

1
100

◆n

=
12

100
1 � 1

100

=
12

100
99

100

=
12
99

.

So 0.12 = 0.121212 . . . is rational since it can be written as the fraction 12
99 .

YOU TRY IT 13.4. Here are a few more repeating decimals to try.

(a) Express 0.9 = 0.9999 . . . as a rational number. What is interesting about the
answer?

(b) Express 0.123 as a rational number.

(c) Express 0.abcd as a rational number, where a, b, c, and d are nonnegative integers.

(d) Express 0.1234 as a rational number.

answertoyoutryit13.4.(b)123
999;(c)abcd

9999;(d)1222
9900.
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