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14.7 The Comparison Tests

The idea behind the comparison tests is pretty simple. Suppose we have a series

such as
•

Â
n=1

1
n2 which we know converges by the p-series test. Now compare this

to the series
•

Â
n=1

1
n2 + n + 2

. The terms in this new series are smaller than the corre-

sponding terms the first series since

0 <
1

n2 + n + 2
<

1
n2 .

So the sum of
•

Â
n=1

1
n2 + n + 2

should be smaller than the sum of
•

Â
n=1

1
n2 . Since the

latter series converges, so does the former.
There are some technical details that need to be checked—for instance, the

terms of the series need to be non-negative. But this idea can be made into a proof
which we will omit here. The result is

THEOREM 14.7.1 (The Direct Comparison Test). Assume that 0  an  bn for all n (or at least
all n � k).

1. If
•

Â
n=1

bn converges so does
•

Â
n=1

an.

2. If
•

Â
n=1

an diverges so does
•

Â
n=1

bn.

note: As stated, this test requires
0  an  bn for all n. But this condition
may be relaxed so that 0  an  bn for
all n > k.

The way to think about this theorem is if the bigger series converges, so does
the smaller one. If the smaller one diverges, then so does the bigger one.

Pre-law and pre-med students (in addition to math students) should delight in
using the the direct comparison test because one needs to see a pattern and then
construct a little argument. I will be looking for these ‘arguments’ when I grade
your work.

Examples

To use the comparison test effectively, you need to know lots of series that diverge
or converge to which you can compare an unknown series. Such series are often
‘provided’ by such tests as the p-series test, the geometric series test, or even the
integral series test. Let’s see how this works.

EXAMPLE 14.7.2. Does
•

Â
n=1

1
2n + 5

converge?

Solution. scrap work: Notice this not a series to which the integral test easily
applies, nor is it a p-series or a geometric series. However, it looks a lot like the

geometric series
•

Â
n=1

1
2n which converges. When we compare a series to a converg-

ing series, we want the unknown series to be smaller than the known series so that
we can use the the first part of the the direct comparison test to show that the new
series also converges. In this case notice that 0  1

2n+5 < 1
2n for all n. OK, let’s give

a careful argument.

argument: Since 0  1
2n+5  1

2n for all n, and since
•

Â
n=1

1
2n converges by the geo-
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metric series test (Theorem 13.2.2) because |r| = 1
2 < 1, then

•

Â
n=1

1
2n + 5

converges

by the direct comparison test (Theorem 14.7.1).
Notice the argument is not long but it has two important aspects. First we iden-

tified a related series that we knew about for comparison. Second we verified the
appropriate hypothesis relating the terms of the unknown series to the one we
knew about.

EXAMPLE 14.7.3. Does
•

Â
n=1

ln n
n

converge?

Solution. scrap work: We could use the integral test. However, this looks a lot

like the harmonic series
•

Â
n=1

1
n

which diverges. When we compare to a diverging

series, we are expecting the unknown series to diverge so we want the terms of the
unknown series to be larger than the terms of the known series. But is it true that
ln n

n > 1
n ? OK, let’s give a careful argument.

argument: Notice that
ln n

n
� 1

n
() ln n � 1 () n � e.

In particular, if n � 3, then ln n
n � 1

n . Since
•

Â
n=1

1
n

diverges (p-series test with p = 1),

then
•

Â
n=1

ln n
n

diverges by the direct comparison test (Theorem 14.7.1).

Notice how we justified the steps in the argument, even justifying why we know
•

Â
n=1

1
n

diverges.

EXAMPLE 14.7.4. Does
•

Â
n=1

2n

5n + 6
converge?

Solution. scrap work: This looks a lot like the geometric series
•

Â
n=1

2n

5n =

•

Â
n=1

✓

2
5

◆n
which converges.

argument: Since 0  2n

5n+6 
� 2

5
�n for all n, and since

•

Â
n=1

✓

2
5

◆n
converges by

the geometric series test (Theorem 13.2.2) because |r| = 2
5 < 1, then

•

Â
n=1

2n

5n + 6
converges by the direct comparison test (Theorem 14.7.1).

EXAMPLE 14.7.5. Does
•

Â
n=1

1
n!

converge?

Solution. scrap work: Notice that the terms of this series get small very
quickly. So we should suspect that it converges. This not a series to which the
integral test easily applies, nor is it a p-series. It takes a bit of algebra to see what
to compare it to.
argument: Notice n! = 1 · 2 · · · (n� 1) · n � (n� 1) · n = n2 � n. So 0 < 1

n! 
1

n2�n .
Now we could apply the integral test to the series Â 1

n2�n to see that it converges,
and then use the direct comparison test to see that Â 1

n! converges. But we can
avoid the integral test by using a bit more algebra. Notice that

n2 � n � n2

2
() n2

2
� n () n

2
� 1 () n � 2.
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So this means n! � n2

2 if n � 2. So 1
n! <

2
n2 , when n � 2. However

•

Â
n=1

2
n2 converges

(p-series, p = 2 > 1) so by direct comparison (Theorem 14.7.1) the series
•

Â
n=1

1
n!

converges.

YOU TRY IT 14.7. Each of the following statements is an attempt to show that a given series
is convergent or divergent using the Comparison Test. Classify each statement, ‘correct’ if
the argument is valid, or ’incorrect’ if any part of the argument is flawed. (Note: Even if the
conclusion is true but the argument that led to it was wrong, classify it as incorrect. )

(a) For all n > 3, 0  1
n  1

n ln(n) , and the series
•

Â
n=3

1
n

diverges so by the Comparison

Test, the series
•

Â
n=3

1
n ln(n)

diverges.

(b) For all n > 2, 0  1
n <

p
n+1
n and the series

•

Â
n=1

1
n

diverges, so by the Comparison

Test, the series
•

Â
n=1

p
n + 1
n

diverges.

(c) For all n > 2, 0  n
3�n3 < 1

n2 , and the series Â
n=2

1
n2 converges, so by the Comparison

Test, the series Â
n=2

n
3 � n3 converges.

(d) For all n � 1, 0  cos2(n)
n3 < 1

n3 , and the series
•

Â
n=1

1
n3 converges, so by the Compari-

son Test, the series
•

Â
n=1

cos2(n)
n3 converges.

(e) For all n � 1, 0  1
n2 < 2n+1

n3 , and the series
•

Â
n=1

1
n2 converges, so by the Comparison

Test, the series
•

Â
n=1

2n + 1
n3 converges.

answertoyoutryit14.7.(a)Incorrect:1
n61

nln(n).(b)Correct.(c)Incorrect.06n
3�n3(d)Cor-

rect.(e)Incorrect.Ifaseriesislargerthanaconvergingseries,thecomparisontestdoesnotapply.

webwork: Click to try Problems 153 through 154. Use guest login, if not in my course.
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The Limit Comparison Test

While the direct comparison test is very useful, there is another comparison test
that focuses only on the tails of the series that we want to compare. This makes
it more widely applicable and simpler to use. We don’t need to verify that an 
bn for all (or most) n. However, it will require our skills in evaluating limits at
infinity!

THEOREM 14.7.6 (The Limit Comparison Test). Assume that an > 0 and bn > 0 for all n (or
at least all n � k) and that

lim
n!•

an
bn

= L.

(1) If 0 < L < • (i.e., L is a positive, finite number), then either the series
•

Â
n=1

an and

•

Â
n=1

bn both converge or both diverge.

(2) If L = 0 and
•

Â
n=1

bn converges, then
•

Â
n=1

an converges.

(3) If L = • and
•

Â
n=1

bn diverges, then
•

Â
n=1

an diverges.

The idea of the theorem is since lim
n!•

an
bn

= L, then eventually an ⇡ Lbn. So if one

of the series converges (diverges) so does the other since the two are ‘essentially’
scalar multiples of each other.

EXAMPLE 14.7.7. Does
•

Â
n=1

1
3n2 � n + 6

converge?

Solution. scrap work: Let’s apply the limit comparison test. Notice that the
terms are always positive since the polynomial 3n2 � n + 6 has no roots. In any
event, the terms are eventually positive since this an upward-opening parabola. If

we focus on highest powers, then the series looks a like the p-series
•

Â
n=1

1
n2 which

converges.
argument: Since the terms 1

3n2�n+6 and 1
n2 are positive, we can apply Theo-

rem 14.7.6.

lim
n!•

an
bn

= lim
n!•

1
3n2�n+6

1
n2

= lim
n!•

n2

3n2 � n + 6
= lim

n!•

1
3 � 1

n + 6
n2

=
1
3
> 0.

Since
•

Â
n=1

1
n2 converges by the p-series test (p = 2 > 1), then

•

Â
n=1

1
3n2 � n + 6

converges by the limit comparison test (Theorem 14.7.6).
note: When the series involve fractions, the first step in the limit process can

be done more efficiently. Instead of dividing one fraction by the other, we can
multiply one fraction by the reciprocal of the other. For instance, earlier in this
example we could have written

lim
n!•

an
bn

= lim
n!•

1
3n2 � n + 6

· n2

1

and then carried out the rest of the calculation.

EXAMPLE 14.7.8 (The General Harmonic Series). The series
•

Â
n=1

1
cn + d

is called the general

harmonic series. If c > 0 does this series converge?
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Solution. scrap work: Let’s apply the limit comparison test by making the

obvious comparison to the harmonic series
•

Â
n=1

1
n

which we know diverges.

argument: Since the terms 1
cn+d are positive once cn + d > 0, in other words

when n > � d
c , and since and 1

n is always positive, we can apply Theorem 14.7.6.

lim
n!•

an
bn

= lim
n!•

1
cn + d

· n
1
= lim

n!•

1
c + d

n
=

1
c
> 0,

since c > 0. Since
•

Â
n=1

1
n

diverges by the p-series test (p = 1), then the general

harmonic series
•

Â
n=1

1
cn + d

diverges by the limit comparison test (Theorem 14.7.6).

EXAMPLE 14.7.9. Does the series
•

Â
n=1

p
n

2n3 + 4
converge?

Solution. scrap work: This time if we focus on highest powers,
•

Â
n=1

p
n

2n3 + 4
is

roughly equal to
•

Â
n=1

n1/2

n3 =
•

Â
n=1

1
n5/2 , which diverges

argument: Since the terms
p

n
2n3+4 and 1

n5/2 are always positive, we can apply
Theorem 14.7.6.

lim
n!•

an
bn

= lim
n!•

n1/2

2n3 + 4
· n5/2

1
= lim

n!•

n3

2n3 + 4
= lim

n!•

1
2 + 4

n3

=
1
2
> 0.

Since
•

Â
n=1

1
n5/2 converges by the p-series test (p = 5

2 > 1), then
•

Â
n=1

p
n

2n3 + 4
con-

verges by the limit comparison test (Theorem 14.7.6).

EXAMPLE 14.7.10. Does the series
•

Â
n=1

1p
4n + 5

converge?

Solution. scrap work: The obvious comparison is to the p-series
•

Â
n=1

1
n1/2

which diverges.
argument: Since the terms 1p

4n+5
and 1

n1/2 are always positive, we can apply
Theorem 14.7.6.

lim
n!•

an
bn

= lim
n!•

1p
4n + 5

· n1/2

1
HPwrs
= lim

n!•

n1/2
p

4n
= lim

n!•

n1/2

2n1/2 =
1
2
> 0.

Since
•

Â
n=1

1
n1/2 diverges by the p-series test (p = 1

2 < 1), then the series
•

Â
n=1

1p
4n + 5

diverges by the limit comparison test (Theorem 14.7.6).

EXAMPLE 14.7.11. Does the series
•

Â
n=1

6n2 · 2n

n4 + 3
converge?

Solution. scrap work: Focusing on highest powers,
•

Â
n=1

6n2 · 2n

n4 + 3
is roughly

•

Â
n=1

n2 · 2n

n4 =
•

Â
n=1

2n

n2 which we saw is divergent in Example 14.2.6.
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argument: Since the terms 6n2·2n

n4+3 and 2n

n2 are always positive, we can apply Theo-
rem 14.7.6. (Note the use of the reciprocal.)

lim
n!•

an
bn

= lim
n!•

6n2 · 2n

n4 + 3
· n2

2n = lim
n!•

6n4

n4 + 3
= lim

n!•

6
1 + 4

n3

= 6 > 0.

Since
•

Â
n=1

2n

n2 diverges from Example 14.2.6, then the series
•

Â
n=1

6n2 · 2n

n4 + 3
diverges by

the limit comparison test (Theorem 14.7.6).

EXAMPLE 14.7.12. Does the series
•

Â
n=1

(�1)n · (2 ln(en) + 2)
cos(np)n3 converge?

Solution. scrap work: First simplify the nth term: cos(np) = (�1)n right?
And 2 ln(en) = 2n. So (�1)n ·(2 ln(en)+2)

cos(np)n3 = 2n+2
n3 . Use a limit comparison test with

Â•
n=1

1
n2 .

argument: Since the terms (�1)n ·(2 ln(en)+2)
cos(np)n3 = 2n+2

n3 and 1
n2 are always positive, we

can apply Theorem 14.7.6.

lim
n!•

an
bn

= lim
n!•

2n + 2
n3 · n2

1
= lim

n!•

2n3 + 2n2

n3
HPwrs
= lim

n!•

2n3

n3 = 2 > 0.

Since
•

Â
n=1

1
n2 converges by the p-series test, then the series

•

Â
n=1

(�1)n · (2 ln(en) + 2)
cos(np)n3

converges by the limit comparison test (Theorem 14.7.6).

EXAMPLE 14.7.13. Does the series
•

Â
n=1

sin
✓

1
n2

◆

converge?

Solution. scrap work: The terms sin
⇣

1
n2

⌘

are always positive. Use a limit

comparison test with Â•
n=1

1
n2 .

argument: Since the terms cos
⇣

1
n2

⌘

and 1
n2 are always positive, we can apply

Theorem 14.7.6.

lim
n!•

an
bn

= lim
n!•

sin
⇣

1
n2

⌘

1
n2

= lim
n!•

sin
⇣

1
x2

⌘

1
x2

l’Ho
= lim

x!•

cos
⇣

1
x2

⌘

·
⇣

� 2
x3

⌘

⇣

� 2
x3

⌘

= lim
x!•

cos
✓

1
x2

◆

= cos 0 = 1.

Since
•

Â
n=1

1
n2 converges by the p-series test, then the series

•

Â
n=1

cos
✓

1
n2

◆

converges

by the first part of the limit comparison test (Theorem 14.7.6).
webwork: Click to try Problems 155 through 158. Use guest login, if not in my course.
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