
Sigma notation

2.1 Introduction

We use sigma notation to indicate the summation process when we have several
(or infinitely many) terms to add up. You may have seen sigma notation in earlier
courses. It is used to indicate the summation of a number of terms that follow
some pattern.

This tells us to
end with i = n

↓
n

∑
i=k

ai

↑
This tells us to
start with i = k

Σ tells us to sum→
ai tells us what

← to sum. Usually ai
is a function of i.

Figure 2.1: The schematics of sigma
notation.

EXAMPLE 2.1.1. Here are several simple examples. Note the the letter for the index need not
be n.

(a)
5

∑
1=1

2i = 2(1) + 2(2) + 2(3) + 2(4) + 2(5) = 30.

(b)
7

∑
i=3

(i2 + 1) = 10 + 17 + 26 + 37 + 50 = 140.

(c)
4

∑
j=1

1
j
= 1 +

1
2
+

1
3
+

1
4
=

25
12

.

(d) In this example n represents some fixed but unknown integer value. Notice that k
changes but n does not.

n

∑
k=1

1
n
(2k + 3) =

1
n
(5) +

1
n
(7) + · · ·+ 1

n
(2n + 3).

(e) Note that the entire summation may be symbolic:

n

∑
i=1

f (xi)∆x = f (x1)∆x + f (x2)∆x + · · ·+ f (xn)∆x.

(f ) Here’s another symbol-laden summation:

n

∑
i=1

f
(

2 + 3i
n

)
3
n = f

(
2 + 3

n

)
3
n + f

(
2 + 6

n

)
3
n + f

(
2 + 9

n

)
3
n + · · · f

(
2 + 3n

n

)
3
n .

If f (x) = x2, then the previous sum would become

n

∑
i=1

(
2 + 3i

n

)2 3
n =

(
2 + 3

n

)2 3
n +

(
2 + 6

n

)2 3
n +

(
2 + 9

n

)2 3
n + · · · (5)2 3

n .
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(g) You should be able to reverse this process and write a sum in compact summation
notation by recognizing appropriate patterns.

2 + 4 + 6 + 8 + · · ·+ 20 =
10

∑
k=1

2k.

Or you might think

2 + 4 + 6 + 8 + · · ·+ 20 = 2(1 + 2 + 3 + 4 + · · ·+ 10) = 2
10

∑
k=1

k.

(h) This reverse process might take place symbolically:

f (1.2)(0.2) + f (1.4)(0.2) + · · ·+ f (2.0)(0.2) =
5

∑
i=1

f (1 + 0.2i)(0.2)

or as

(0.2)[ f (1.2) + f (1.4) + · · ·+ f (2.0)] = 0.2
5

∑
i=1

f (1 + 0.2i)

YOU TRY IT 2.1 (Sigma Notation). Translate each of the following:

(a)
4

∑
n=1

n2 (b)
5

∑
n=2

cos(nπ) (c)
4

∑
n=0

n3 + 2n

Now write each of the following sums using sigma notation.

(d) 6 + 9 + 12 + 15 + 18 (e) 3 + 9 + 27 + 81 + 243

(f ) −1 + 1− 1 + 1− 1 + 1 (g) 0 + 1 +
√

2 +
√

3 + · · ·+
√

20
answertoyoutryit2.1.

(a)1+4+9+16=30(b)1−1+1−1=0(c)0+3+12+33+72=120

(d)3
6

∑n=2
n(e)

5

∑
n=1

3n(f)
6

∑
n=1

(−1)n(g)
20

∑n=0

√
n

YOU TRY IT 2.2 (Challenge). Determine the values for each of these sums for n = 5, 10, and
20.

(a)
n

∑
k=1

1
k

(b)
n

∑
k=1

1
k2 (c)

n

∑
k=0

1
2k

(d) Now determine a general formula for any value of n for the sum
n

∑
k=0

1
2k .

Notice in some of the sums we factored out a constant term. In fact applying
basic associativity and distributivity laws for addition, we have

n

∑
i=1

cai = ca1 + ca2 + · · ·+ can = c(a1 + a2 + · · ·+ an) = c
n

∑
i=1

ai

and

n

∑
i=1

(ai + bi) = (a1 + b2) + (a2 + b2) + · · ·+ (an + bn)

= (a1 + a2 + · · ·+ an) + (b1 + b2 + · · ·+ bn) =
n

∑
i=1

ai +
n

∑
i=1

bi.

In other words, we have
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THEOREM 2.1.2 (Basic Summation properties). For any constant c,

(a)
n

∑
i=1

cai = c
n

∑
i=1

ai

(b)
n

∑
i=1

(ai + bi) =
n

∑
i=1

ai +
n

∑
i=1

bi.

2.2 Four Key Summation Formulæ

As we begin to tackle the area problem we will find that we need to use a few
basic summation formulæ repeatedly.

The first is quite easy to see. Suppose that c is a constant. Then

n

∑
i=1

c =
n times︷ ︸︸ ︷

c + c + · · ·+ c = nc.

Another simple formula that you can figure out is the sum of the first n inte-
gers. Let Sn = 1 + 2 + 3 + · · ·+ (n− 1) + n. For example, S4 = 1 + 2 + 3 + 4 = 10
(as any bowler would know). There a formula for Sn that C. F. Gauss (a very fa-
mous 19th century mathematician) figured out when he was 6. Here’s how: Write
the summands forwards and backwards like so:

Sn = 1 + 2 + 3 + · · ·+ (n− 1) + n
+ Sn = n + (n− 1) + (n− 2) + · · ·+ 2 + 1

2Sn =

1. Now add each column. What do you get as the total for each? How many
times?

2. So what is the formula for 2Sn? Now solve for Sn.

3. Use your formula to check that S4 = 10. Now use it to determine S10 and S100.

4. Suppose you wanted to sum the even integers only. Let Tn be the sum of the
first n even integers: Tn = 2 + 4 + · · ·+ 2n. What is the formula for Tn?

Ok, your formula for the sum of the first n integers should have been Sn =
n(n+1)

2 . There are two more formulæ that you should memorize: the sum of the
first n integers squared and cubed. They are listed below. Their proofs are a little
harder and we will skip them here.

THEOREM 2.2.1 (Summation Formulæ). For any positive integer n

(a)
n

∑
i=1

c = nc

(b)
n

∑
i=1

i =
n(n + 1)

2

(c)
n

∑
i=1

i2 =
n(n + 1)(2n + 1)

6

(d)
n

∑
i=1

i3 =
n2(n + 1)2

4

Interesting! The sum the first n cubes
is the square of the sum of the first n
integers.
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EXAMPLE 2.2.2. Let’s use these formulæ to calculate a few sums.

(a)
8

∑
i=1

i2 =
n(n + 1)(2n + 1)

6
=

8(9)(17)
6

= 204.

(b) This next problem is more typical: We have an unknown upper limit for the sum. The
goal is to express the answer as simply as possible.

n

∑
i=1

3i2

n3 =
3

n3

n

∑
i=1

i2 =
3

n3

[
n(n + 1)(2n + 1)

6

]
=

(n + 1)(2n + 1)
2n2

=
2n2 + 3n + 1

2n2

=
2n2 + 3n + 1

2n2

= 1 +
3

2n
+

1
2n2 .

(c) Now use limits to determine the value of the previous sum as n→ ∞

lim
n→∞

n

∑
i=1

3i2

n3 = lim
n→∞

1 +
3

2n
+

1
2n2 = 1 + 0 + 0 = 1.

(d) The ability to determine limits like the one above will be critical for solving the area
problem. Here’s another. Determine

lim
n→∞

n

∑
i=1

2i− 3
n2 .

First we work on the sum using Theorem 2.1.2 and 2.2.1
n

∑
i=1

2i− 3
n2 =

2
n2

n

∑
i=1

i− 3
n2

n

∑
i=1

1 =
2

n2

[
n(n + 1)

2

]
− 3

n2 (n)

=
n + 1

n
− 3

n

=
n− 2

n

= 1− 2
n

.

So

lim
n→∞

n

∑
i=1

2i− 3
n2 = lim

n→∞
1− 2

n
= 1− 0 = 1.

(e) Let Sn =
n

∑
i=1

4
n

[(
i
n

)3
+ 3

]
. Determine lim

n→∞
Sn.

Solution. This time

Sn =
n

∑
i=1

4
n

[(
i
n

)3
+ 3

]
=

4
n

n

∑
i=1

(
i
n

)3
+

4
n

n

∑
i=1

3 =
4

n4

n

∑
i=1

i3 +
4
n
(3n)

=
4

n4

[
n2(n + 1)2

4

]
+ 12

=
(n + 1)2

n2 + 12

=
n2 + 2n + 1

n2 + 12

= 1 +
2
n
+

1
n2 + 12

= 13 +
2
n
+

1
n2 .

So
lim

n→∞
Sn = lim

n→∞
13 +

2
n
+

1
n2 = 13.
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YOU TRY IT 2.3. Use summation properties and formulæ to find the following general sums.
Your answer will be in terms of n. Be sure to simplify.

(a)
n

∑
i=1

(
2i
n

)(
2
n

)
(b)

n

∑
i=1

i2 − 1
n3 (c)

n

∑
i=1

(
1 +

i
n

)2 ( 1
n

)
Now use your answers to (a) and (b) to determine

(d) lim
n→∞

n

∑
i=1

(
2i
n

)(
2
n

)
(e) lim

n→∞

n

∑
i=1

i2 − 1
n3

answertoyoutryit2.3.

(c)
7
3
+

3
2n

+
1

6n2(d)2(e)
1
3

YOU TRY IT 2.4. Here are two more to practice.

(a) Let Sn =
n

∑
i=1

2
n

[
2− 2

(
i
n

)2
]

. Determine lim
n→∞

Sn.

(b) Let Rn =
n

∑
i=1

12
n

[(
i
n

)2
− 2i

n

]
. Determine lim

n→∞
Rn.

answertoyoutryit2.4.

(a)
8
3

(b)−8

A Look Ahead

This next example is much more typical of how we will actually use summation
notation.

EXAMPLE 2.2.3. Let f (x) = 2− 1
2 x2 on the closed interval [0, 2]. Determine the value of

n

∑
i=1

f
(

2i
n

)
· 2

n
,

where n is an arbitrary positive integer.

Solution. First we must evaluate f
(

2i
n

)
.

f
(

2i
n

)
= 2− 1

2

(
2i
n

)2
= 2− 1

2

(
4i2

n2

)
= 2− 2i2

n2 . (2.1)

Now turning to the sum

n

∑
i=1

f
(

2i
n

)
· 2

n
=

n

∑
i=1

[
2− 2i2

n2

]
2
n

Using (2.1)

=
2
n

n

∑
i=1

[
2− 2i2

n2

]
n is constant, use Theorem 2.1.2(a)

=
2
n

n

∑
i=1

2− 2
n

n

∑
i=1

2i2

n2 Split the sum, use Theorem 2.1.2(b)

=
2
n
· 2n− 4

n3

n

∑
i=1

i2 Theorem 2.2.1(a) and Theorem 2.1.2(a)
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Now use the summation formulæ.

n

∑
i=1

f
(

2i
n

)
· 2

n
=

2
n
· 2n− 4

n3

n

∑
i=1

i2 Theorem 2.2.1(a) and Theorem 2.1.2(a)

= 4− 4
n3 ·

n(n + 1)(2n + 1)
6

Theorem 2.2.1(c)

= 4− 2(n + 1)(2n + 1)
3n2 Simplify

= 4− 4n2 + 6n + 2
3n2 Simplify

= 4− 4
3
− 2

n
− 2

3n2 Simplify and distribute the minus sign

=
8
3
− 2

n
− 2

3n2 .

Notice that we can use this general solution to evaluate sums for various values of
n without having to redo the sum. For example if n = 10, then

10

∑
i=1

f
(

2i
10

)
· 2

10
=

8
3
− 2

10
− 2

3(10)2 = 2.46.

More generally, as n→ ∞, it is easy to see that

lim
n→∞

n

∑
i=1

f
(

2i
n

)
· 2

n
= lim

n→∞

(
8
3
− 2

n
− 2

3n2

)
=

8
3

. (2.2)

webwork: Click to try Problems 12 through 15.

Why do this? What do sums such as those in Example 2.2.3 represent? Why
should we be interested in them? Well, f

(
2i
n

)
represents the of a function at n

equally spaced points. The points are 2
n units apart. We can think of the product

f
(

2i
n

)
· 2

n as "height × width" or the area of a rectangle. Thus the sum repre-
sents the area of rectangles that approximate the area under the curve of f . As the
figures below indicate, as the number of rectangles n gets larger, we get a more
precise approximation to the actual area under the curve.

0.0 0.4 0.8 1.2 1.6 2.0



0.0 0.4 0.8 1.2 1.6 2.0



Figure 2.2: The left-hand graph shows
for the function f (x) = 2− 1

2 x2 on
[0, 2] with the interval divided in to
n = 10 subintervals of width 2

n = 2
10 .

The heights of the rectangles come from

the function values f
(

2i
n

)
= f

(
2i
10

)
as

i changes from 1 to 10. he sum of the
areas of the 10 rectangles is 2.46 and is
an approximation of the area under the
curve on the interval [0, 2].

In the right-hand graph, n = 40,
and the same process is repeated. The
sum of the areas of all the rectangles is
a better approximation of the true area
under the curve on the interval [0, 2].

By letting n→ ∞, we may obtain the
exact area under the curve. We found
that this area was 8

3 in (2.2).

http://math.hws.edu/webwork2/Math131-Mitchell/Math131/12/
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