
Integration by Substitution

In this chapter we expand our methods of antidifferentiation. We have encoun-
tered integrals which we have been unable to determine because we did not know
an antiderivative for the integrand. The technique we discuss below is simply
reversing the chain rule for derivatives. Remember, every derivative rule can be
reversed to create an antidifferentiation rule. Our objectives are to

• Use pattern recognition to find an indefinite integral.

• Use a change of variables to find an indefinite integral.

• Use a change of variables to evaluate a definite integral.

All are techniques for integrating composite functions. The discussion is split
into two parts: pattern recognition and change of variables. Both techniques in-
volve a so-called u-substitution. With pattern recognition we perform the substi-
tution mentally, and with change of variables we write the substitution in detailed
steps.

Pattern Recognition

Recall that the chain rule for derivatives of composite functions states:

THEOREM 3.1.1 (Chain Rule). If y = F(u) and u = g(x) are differentiable then

d
dx

[F(g(x))] = F′(g(x))g′(x)

or, equivalently,
d

dx
[F(u)] = F′(u)

du
dx

.

Notice in this set-up that
du
dx

= g′(x) (3.1)

the corresponding differentials are1 1 Though du
dx is a derivative and a single

entity, when working with differentials
it is as if one can multiply each side
of (3.1) by dx to obtain the equation in
(3.2).

du = g′(x)dx. (3.2)

Reversing the chain rule, from the definition of an antiderivative, we get:

THEOREM 3.1.2 (Substitution). Assume F is an antiderivative of f (so F′ = f ) and that g is
differentiable. Then letting u = g(x) so du = g′(x)dx, we get∫

f (g(x))g′(x) dx =
∫

f (u) du = F(u) + c = F(g(x)) + c. (3.3)
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Once we know F is and antiderivative of f , then by definition of antiderivative we
have

∫
f (u) du = F(u) + c . . . for example,

∫
cos u du = sin u + c no matter what the

differentiable function u is. This is the whole point of substitution whether it is done
mentally or written out: Convert the problem into one that we can solve ‘just by
looking at it.’

To apply Theorem 3.1.2 directly, we must recognize the presence of f (g(x)) and
g′(x), i.e., f (u) and du

dx . Note that the composite function in the integrand has an
outside function f and an inside function g. Moreover, the derivative g′(x) must also
be present as a factor of the integrand so that (3.3) becomes:

∫ outter︷︸︸︷
f (g(x)︸︷︷︸

inner

)

inner deriv︷ ︸︸ ︷
g′(x) dx.

EXAMPLE 3.1.3 (Recognizing the pattern). Determine
∫

cos(x3)3x2 dx.

Solution. There is a function which is literally ‘inside’ the parentheses in this
problem. So the inside function is u = x3 and its derivative, 3x2 is a factor in the
integrand. ∫

cos(

u︷︸︸︷
x3 )

du︷ ︸︸ ︷
3x2 dx .

In other words,2 the integral can be thought of as 2 Let u = x3 and du = 3x2 dx.∫
cos(u) du = sin u + c = sin(x3) + c,

where we have been careful to rewrite the answer in terms of the original variable
x. Can you do this manipulation in your head? You should be able to. Check the
answer by differentiating.

EXAMPLE 3.1.4 (Recognizing the pattern). Determine
∫

e3t dt.

Solution. We have seen this type of problem before. . . it requires a ‘mental ad-
justment.’ In our current thinking the ‘obvious’ inside function is u = 3t. The
corresponding differential is du = 3 dt, so we think 1

3 du = dt. Mentally

∫
e

u︷︸︸︷
3t

1
3 du︷︸︸︷
dt =

∫
1
3 eu du = 1

3 eu + c = 1
3 e3t + c.

Mental adjustment is just a simple case of u-substitution which you should be able
to do in your head. Check the answer by differentiating.

EXAMPLE 3.1.5 (Recognizing the pattern). Determine
∫

e3 tan x sec2 x dx.

Solution. Before reading further, try to do the manipulation required in your
head or with minimal scratch work.

Ok, let’s work it out—we will write down what you should be thinking. Again
there is an ‘obvious’3 inside function: 3 tan x and its derivative is 3 sec2 x. Notice 3 Why is it obvious?

that we have sec2 x as a factor in the integrand, but we are missing a factor of 3.
When we are only off by a constant factor we can make a mental adjustment and
still do the integral. Think of 3 tan x as u so 3 sec2 x dx is the differential (deriva-
tive) du, so in our integrand we have sec2 x dx = 1

3 du.

∫
e

u︷ ︸︸ ︷
3 tan x

1
3 du︷ ︸︸ ︷

sec2 x dx,

Substitution.tex Version: Mitchell-2015/09/17.08:01:56

Substitution.tex


3

which is exactly the same as in Example 3.1.4. So the integral can be thought of as∫
1
3 eu du = 1

3 eu + c = 1
3 e3 tan x + c,

where we have been careful to rewrite the answer in terms of the original variable
x. For this one, you might have to write out a note or two on the substitution to
complete the problem, but in the end the pattern is no different than the previous
one in Example 3.1.4. That’s what substitution is all about—and that’s what math-
ematics is all about. Recognizing patterns and taking advantage of them. Check
the answer by differentiating.

EXAMPLE 3.1.6 (Recognizing the pattern). Determine
∫

12x3
√

3x4 + 1 dx.

Solution. Start by trying to do it in your head. Find the inside function u and
and its differential du.

This time the inside function is u = 3x4 + 1 and its differential is du = 12x3 dx,
which is a factor in the integrand. So (mentally) reordering the integral and writ-
ing the square root as a power, we think

∫
( 3x4 + 1︸ ︷︷ ︸

u

)1/2 ·

du︷ ︸︸ ︷
12x3 dx =

∫
u1/2 du = 2

3 u3/2 + c = 2
3 (3x4 + 1)3/2 + c.

Check the answer by differentiating.

EXAMPLE 3.1.7 (Recognizing the pattern). Determine
∫
(4x3 + 3x2)4(6x2 + 3x) dx.

Solution. Ok, this is a bit harder. Try to find the inside function u and and its
differential du. Do we have both?

The inside function is u = 4x3 + 3x2 and4 its differential is du = (12x2 + 6x) dx. 4 Could we have let u = 12x2 + 6x since
it, too, is inside a set of parentheses?
Why or why not?

Notice that we have 1
2 du = (6x2 + 3x) dx as a factor in the integrand; we are off by

a constant factor. Rethinking the integral we get

∫
(

u︷ ︸︸ ︷
4x3 + 3x2 )4

1
2 du︷ ︸︸ ︷

(6x2 + 3x) dx =
∫

1
2 u4 du = 1

10 u5 + c = 1
10 (4x3 + 3x2)5 + c.

Check the answer by differentiating.

EXAMPLE 3.1.8 (Recognizing the pattern). Determine
∫ 6x

x2 + 1
dx.

Solution. What do you think this time?
The ‘inside’ function is less obvious. However, if we try to spot the pieces u and

du, it is pretty clear that that we want u to be the higher-degree term. If we let u
be the denominator, u = x2 + 1, then the differential du = 2x dx. Notice that we
have 3du = 6x dx as the numerator in the integrand; we are off by a constant factor.
Rethinking the integral we get

∫ 3du︷ ︸︸ ︷
6x dx
x2 + 1︸ ︷︷ ︸

u

= 3
∫ 1

u
du = 3 ln |u|+ c = 3 ln(x2 + 1) + c.

Check the answer by differentiating.

YOU TRY IT 3.1. Determine each of the following:

(a)
∫

sec2(sin x) cos x dx (b)
∫ 2 ln t

t
dt (c)

∫
(x + 2) tan(x2 + 4x) dx

answertoyoutryit3.1.(a)tan(sinx)+c;(b)(lnt)2+c;(c)
ln(sec(x2+4x))

2+c.

webwork: Click to try Problems 50 through 58. Use guest login, if not in my course.

http://math.hws.edu/webwork2/Math131-Mitchell/Math131/50/
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Change of Variables

The process of changing variables formalizes what we were doing in the previ-
ous section. I am imagining that you were trying to do the previous problems in
your head. They get harder because we have to keep track of more things. If u is
complicated, so is du. Do we have du exactly or are we off by a constant? Then the
integral itself, even after substitution, may not be entirely obvious.

With a formal change of variables, we completely rewrite the integral in terms
of u and du (or any other convenient variable). Although this procedure can in-
volve more written steps than the pattern recognition illustrated in the previous
examples, it is useful for complicated integrands.

Let’s try some. The first few will be similar to the last few examples to illustrate
the process.

EXAMPLE 3.1.9. Determine
∫
(3− 2 sin x)6 cos x dx.

Solution. The ‘inside’ function is literally inside the parentheses:

u = 3− 2 sin x, so du = −2 cos x dx

or − 1
2

du = cos x dx.

Now, using u = 3− 2 sin x and − 1
2 du = cos x dx quite literally substitute or replace

the pieces in the original integral. Rewriting (not just rethinking) the integral we
get ∫

(3− 2 sin x)6 cos x dx =
∫
−1

2
u6 du = − 1

14
u7 + c = − 1

14
(3− 2 sin x)7 + c.

To keep track of the negative sign and constant factor in the integration is easier
when you write down more details rather than trying to keep it all in your head.
Check the answer by differentiating.

EXAMPLE 3.1.10. Determine
∫ sin x

cos4 x
dx.

Solution. This time the denominator is the more complicated function which is
often an indication that it is the ‘u’. So let

u = cos x, so du = − sin x dx

or − du = sin x dx.

Now replace the pieces in the original integral.∫ sin x
cos4 x

dx =
∫
−u−4 du =

1
3

u−3 + c =
1
3
(cos x)−3 + c =

1
3 cos3 x

+ c.

Notice that there are two negative signs that are introduced along the way. One
or the other would be easy to lose if you try to keep all the details in your head.
Check the answer by differentiating.

EXAMPLE 3.1.11. Determine
∫ 3ex + 3e−x

(ex − e−x)3 dx.

Solution. Again the denominator is the more complicated function and the
‘inside’ function is literally inside the parentheses. So let

u = ex − e−x, so du = ex + e−x dx

or 3 du = (3ex + 3e−x) dx.
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Replace the pieces in the original integral.∫ 3ex + 3e−x

(ex − e−x)3 dx =
∫

3u−3 du = − 3
2 u−2 + c = − 3

2 (e
x − e−x)−2 + c.

The problem ends up being very similar to the previous example. Check the an-
swer by differentiating.

EXAMPLE 3.1.12. Determine
∫

tan x dx.

Solution. We don’t know an antiderivative for this integrand, and it does not
look like a substitution problem. However, we can rewrite the integrand.∫

tan x dx =
∫ sin x

cos x
dx.

We could let u = sin x and then du = cos x dx. Notice though that we do not have
cos x dx; in our integrand we have 1

cos x dx. We are not off by a constant factor so we
have to try something else. Let

u = cos x, so du = − sin x dx

or − du = sin x dx.

We saw this same substitution in Example 3.1.10. Now replace the pieces in the
original integral.∫

tan x dx =
∫ sin x

cos x
dx = −

∫ 1
u

du = − ln |u|+ c = − ln |cosx|+ c = ln | sec x|+ c.

Check the answer by differentiating.
The solution to Example 3.1.12 is important enough so that you should memo-

rize it so that you do not have to re-invent the solution each time you see it.∫
tan x dx = ln | sec x|+ c. (3.4)

YOU TRY IT 3.2. Fill in the blank with a function that makes this an easy problem to do and
then solve the problem: ∫

tan(ex3+1) dx.

answertoyoutryit3.2.u=3x2

EXAMPLE 3.1.13. Here’s the other trig integral I want you to know. Determine
∫

sec x dx.

Solution. Again this does not look like a substitution problem, even if you
rewrite sec x as 1

cos x . I still remember my Calc II teacher in college showing us
how to solve this integral using substitution. I thought it was very neat!

Ok, the trick here (and it is a trick) is to multiply the integrand by 1 in the form

sec x + tan x
sec x + tan x

.

Now ∫
sec x dx =

∫
sec x

(
sec x + tan x
sec x + tan x

)
dx =

∫ sec2 x + sec x tan x
sec x + tan x

dx.

How does this help? Now we can use substitution. This is one of the few times
where the less complicated expression—the denominator—is actually u. Let

u = sec x + tan x, so du = (sec x tan x + sec2 x) dx.
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The numerator is precisely du. Now replace the pieces in the original integral.

∫
sec x dx =

∫ sec2 x + sec x tan x
sec x + tan x

dx =
∫ 1

u
du = ln |u|+ c = ln | sec x + tan x|+ c.

Neat! Check the answer by differentiating.
The solution to Example 3.1.13 is also important enough so that you should

memorize it so that you do not have to re-invent the solution each time you see it.

∫
sec x dx = ln | sec x + tan x|+ c. (3.5)

EXAMPLE 3.1.14. The two new integration rules in (3.4) and (3.5) can themselves be used in

u-substitution problems. Determine
∫

2x sec(4x2 + 1) dx.

Solution. Ok, this time the inside function is

u = 4x2 + 1 so du = 8x dx or 1
4 du = 2x dx.

Ok, now we can make use of (3.5): Now∫
2x sec(4x2 + 1) dx =

∫
1
4 sec u du = 1

4 ln | sec u + tan u|+ c

= 1
4 ln | sec(4x2 + 1) + tan(4x2 + 1)|+ c.

(Check the answer by differentiating.)

EXAMPLE 3.1.15 (Complex Pattern Recognition). Determine
∫ x

1 + x4 dx.

Solution. When we try the ‘obvious’ substitution here, namely u = 1 + x4, we
see that du = 4x3 dx. However, we don’t have a factor of x3 in the integrand. If we
step back a second, the integrand looks a bit like the derivative of an arctangent
function. The denominator consists of 1 plus something squared. The ‘something
squared’ is x4. So suppose we let

u2 = x4, then u = x2, so du = 2x dx

or 1
2 du = x dx.

Now replace the pieces in the original integral.

∫ x
1 + x4 dx =

∫ 1
2

1 + u2 du = 1
2 arctan u + c = 1

2 arctan(x2) + c.

Check the answer by differentiating.

EXAMPLE 3.1.16 (Complex Pattern Recognition). Determine
∫ x2
√

1− 4x6
dx.

Solution. Again the ‘obvious’ substitution u = 1 − 4x6 fails because du =

−24x5 dx and we don’t have a factor of x5 in the integrand. But could this be an
arcsine problem? If the denominator is to have the right form it must look like√

1− u2. That would mean that
√

1− u2 =
√

1− 4x6. This means that u2 = 4x6, so
we must have u = 2x3. But if

u = 2x3, then du = 6x2 dx

or 1
6 du = x2 dx.
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Things have worked out: we do have an x2 in the integrand! Now replace the
pieces in the original integral.

∫ x2
√

1− 4x6
dx =

∫ 1
6√

1− u2
du = 1

6 arcsin u + c = 1
6 arcsin(2x3) + c.

Check the answer by differentiating.

EXAMPLE 3.1.17 (Complex Pattern Recognition). Determine
∫

xex2
tan(ex2

) dx.

Solution. Here the ‘obvious’ substitution seems to be u = ex2
because this term

is inside the parentheses. If

u = ex2
, then du = 2xex2

dx

or
1
2

du = xex2
dx.

Now replace the pieces in the original integral.∫
xex2

tan(ex2
) dx =

∫ 1
2

tan u du =
1
2

ln | sec u|+ c =
1
2

ln | sec(ex2
)|+ c.

Notice that we have used our work in (3.4) as well as substitution to solve the
problem. Check the answer by differentiating.

webwork: Click to try Problems 59 through 63. Use guest login, if not in my course.

Take-home Message

Right now you know antiderivative formulæ for a half-dozen or so types of func-
tions: logs, exponentials, a few trig and inverse trig functions, and powers. These
all have their corresponding u-substitution forms. You simply need to be on the
lookout for them. Here’s a list of the most important forms. Remember that u will
vary from problem to problem and you may need to adjust by a constant.

(a)
∫

sin u du (b)
∫

cos u du (c)
∫

tan u du (d)
∫

eu du

(e)
∫ 1

u
du (f )

∫ 1
1 + u2 du (g)

∫ 1√
1− u2

du (h)
∫

uk du

More Complex Substitutions

This section consists of a few more examples where substitution is used, but may
be harder to see. When you think about it for a second, at this point if you are
faced with an integral, you have only three choices: (1) you recognize the inte-
grand immediately as the derivative of one of a couple of handfuls of basic func-
tions; (2) you try substitution; (3) you are stuck. As the term progresses we will
develop additional integration techniques and you will have to become adept at
sorting out which technique applies to a given situation. But for now, if the answer
is not obvious, you have only one choice: Try substitution by identifying u and du
in the integrand.

EXAMPLE 3.1.18 (Complex Pattern Recognition: Logs). Here’s a classic: Determine
∫ 2

x ln x
dx.

Solution. From the comments above, since this is not an integrand that you are
likely to recognize immediately, we need to try substitution. In several instances

http://math.hws.edu/webwork2/Math131-Mitchell/Math131/59/
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we have used the denominator of an expression as u. If we try that here, u =

x ln x du = (1 + ln x) dx which does not appear in the integrand. Looking at the
expressions as two pieces 1

x and 1
ln x you should notice that 1

x is the derivative of
ln x. Let’s see where this leads. If

u = ln x, then du =
1
x

dx

or 2 du =
2
x

dx.

Now replace the pieces in the original integral.∫ 2
x ln x

dx =
∫ 2

u
du = 2 ln |u|+ c = 2 ln | ln x|+ c.

You should check the answer by differentiating.

YOU TRY IT 3.3. These problems are similar to Example 3.1.18. Try them now.

(a)
∫ ln t

t
dt (b)

∫
(ln x)3

x
dx (c)

∫ 1
x(ln x)3 dx

answertoyoutryit3.3.(a)
(lnx)2

2+c;(b)
(lnx)4

4+c;(c)−
(lnx)−2

2+c.

Complex Pattern Recognition: Inverse Trig Functions

Ok, I waffle back and forth on the most efficient and effective way to present this
material. Let’s plunge ahead and see where this takes us. In Examples 3.1.15 and
3.1.16 we used substitution with inverse trig functions. In each case we had an
integrand that had the form 1

1+u2 or 1√
1−u2 , where u was a function of x. The key

was the “1” plus or minus something squared which reminded us of the arctan-
gent or arcsine functions.

The problem is a bit more complicated if we have an integrand with something
other than a 1. Here’s what I mean: Assume a > 0. Suppose our integrand in-
volves 1√

a2−x2 , where u is some function of x. With a bit of algebra, we can rewrite
this is more convenient form:

√
a2 − x2 =

√
a2 − a2x2

a2 =

√
a2
(

1− x2

a2

)
= a

√
1− x2

a2 (3.6)

So now ∫ 1√
a2 − x2

dx =
∫ 1

a
√

1− x2

a2

dx.

Now the ‘obvious’ substitution is u2 = x2

a2 so that

u =
x
a

, then du =
1
a

dx

We have a factor of 1
a in the integrand. Substituting∫ 1√

a2 − x2
dx =

∫ 1

a
√

1− x2

a2

dx =
∫ 1√

1− u2
du = arcsin u + c = arcsin

x
a
+ c.

(3.7)
Since the name of the variable is irrelevant, we can write (3.7) more generally as

∫ 1√
a2 − u2

du = arcsin
u
a
+ c. (3.8)
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Using exactly the same sort of process, we find∫ 1
a2 + u2 du =

1
a

arctan
u
a
+ c. (3.9)

Caution: First, note that you must have u and du exactly in the integrand to get
the answers in (3.8) and (3.9). Most of the time, one will need to adjust by some
constant factor. Second, observe that there is factor of 1

a in this antiderivative in
(3.9).

Should you memorize these two for-
mulæ? It will make your life easier
if you do. The problem, of course,
is that one has to remember that the
arctangent has an additional factor of 1

a .
YOU TRY IT 3.4. Derive equation (3.9) using a process similar to what we did to prove (3.8).
Why is there a factor of 1

a in this antiderivative but not for the arcsine function in (3.8)

The next two examples show how (3.8) and (3.9) are used.

EXAMPLE 3.1.19 (Complex Pattern Recognition: Inverse Trig). Determine
∫ 1√

36− 25x2
dx.

Solution. Use (3.8). Here Ordinary u-substitution fails because
u = 36− 25x2 so du = −50x dx and
there is no ‘x’ term in the numerator.a2 = 36 and u2 = 25x2

or a = 6, and u = 5x

so du = 5 dx

so
1
5

du = dx.

Now replace the pieces in the original integral.∫ 1√
36− 25x2

dx =
∫ 1

5√
a2 − u2

du =
1
5

arcsin
u
a
+ c =

1
5

arcsin
5x
6

+ c.

Notice that we have had to adjust (3.8) by a constant factor of 1
5 because we did not

have du exactly in the integrand.

EXAMPLE 3.1.20 (Complex Pattern Recognition: Inverse Trig). Determine
∫ x

36 + 25x4 dx.

Solution. Use (3.9). Here Ordinary u-substitution fails because
u = 36 + 25x4 so du = 100x3 dx and
there is no ‘x3’ term in the numerator,
only an ‘x’.

a2 = 36 and u2 = 25x4

or a = 6, and u = 5x2

so du = 10x dx so 1
10 du = x dx.

Now carefully replace the pieces in the original integral.∫ x
36 + 25x4 dx =

∫ 1
10

a2 + u2 du =
1

10
· 1

a
· arctan

u
a
+ c =

1
60

arctan
5x2

6
+ c.

Be careful! Not only did we have to adjust (3.9) by a constant factor of 1
10 but we

have to remember the additional factor of 1
a = 1

6 here giving us 1
60 int the final

answer.

EXAMPLE 3.1.21 (Complex Pattern Recognition: Inverse Trig). Determine
∫ 1

2 + 9x2 dx.

Solution. Use (3.9). Here

a2 = 2 and u2 = 9x2

or a =
√

2, and u = 3x

so du = 3 dx

so
1
3

du = dx.
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Now replace the pieces in the original integral and use (3.9).

∫ 1
2 + 9x2 dx =

∫ 1
3

a2 + u2 du =
1
3
· 1

a
arctan

u
a
+ c =

1
3
√

2
arctan

3x√
2
+ c.

Check the answer by differentiating.

YOU TRY IT 3.5. These problems are similar to Examples 3.1.20 and 3.1.21. Try them now.

(a)
∫ 5

3 + 25t2 dt (b)
∫ 1√

9− 16x2
dx

answertoyoutryit3.5.

(a)
1
√

3
arctan

5t
√

3
+c(b)

1
4

arcsin
4x
3

+c.

EXAMPLE 3.1.22 (Complex Pattern Recognition). Determine
∫ x

2 + 9x2 dx.

Solution. Do you see what’s going on here?5 Don’t get fooled by all the inverse 5 “Oh, look out!” She Came in Through
the Bathroom Window—The Beatles.trig problems we’ve been doing. This is simpler substitution leading to a log inte-

gral. Here

u = 2 + 9x2 so du = 18x dx

so
1

18
du = x dx.

Now replace the pieces in the original integral.

∫ x
2 + 9x2 dx =

∫ 1
18
u

du =
1

18
ln |u|+ c =

1
18

ln(2 + 9x2) + c.

Check the answer by differentiating.

EXAMPLE 3.1.23 (Complex Pattern Recognition). Determine
∫ x

2 + 9x4 dx.

Solution. Now we are back to an inverse trig problem again. Here

a2 = 2 and u2 = 9x4

or a =
√

2, and u = 3x2

so du = 6x dx

so
1
6

du = x dx.

Replace the pieces in the original integral and use (3.9).

∫ x
2 + 9x4 dx =

∫ 1
6

a2 + u2 du =
1
6
· 1

a
arctan

u
a
+ c =

1
6
√

2
arctan

3x2
√

2
+ c.

Check the answer by differentiating.

EXAMPLE 3.1.24 (Complex Pattern Recognition). Determine
∫ x + 1√

9− x2
dx.

Solution. If the numerator of in the integrand were just x, we’d have an ordinary
substitution problem (do you see why?). If the numerator were just 1 we’d have an
arcsine problem (right?). Well, what we have is both. We can rewrite the integral as
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the sum of two integrals, each of which we can solve as just described.∫ x + 1√
9− x2

dx =
∫ x√

9− x2
dx +

∫ 1√
9− x2

dx

=
∫
−

1
2

u1/2 du +
∫ 1√

a2 − x2
dx

= −u1/2 + arcsin
x
a
+ c

= −
√

9− x2 + arcsin
x
3
+ c

Check the answer by differentiating.

For the first integral in the sum, let

u = 9− x2 so du = −2x dx

so − 1
2

du = x dx.

and in the second a2 = 9 or a = 3.

EXAMPLE 3.1.25 (Complex Pattern Recognition). Determine
∫ sec2(4x)

9 + tan2(4x)
dx.

Solution. If the denominator were just 9 + tan(4x) we could try a straightforward
u-substitution and end up with a natural log, since the derivative of 9 + tan(4x) is
4 sec2(4x) which we (almost) have in the numerator. But notice that we can think
of 9 + tan2(4x) as a2 + u2, so what about an arctangent?

a2 = 9⇒ a = 3 u2 = tan2(4x)⇒u = tan(4x)

du = 4 sec2(4x) dx so 1
4 du = sec2(4x) dx

Now substituting we find∫ sec2(4x)
9 + tan2(4x)

dx =
1
4

∫ 1
a2 + u2 dx =

1
4
· 1

a
· arctan

(u
a

)
+ c

=
1

12
arctan

(
tan(4x)

3

)
+ c

Check the answer by differentiating.

YOU TRY IT 3.6. These integrals are similar looking and are done using substitution. How-

ever, the answers are quite different. Work each out.

(a)
∫ 2t√

4− t2
dt (b)

∫ 2t√
1− 4t4

dt (c)
∫ t + 4√

4− t2
dt

answertoyoutryit3.6.

(a)−2√4−t2+c(b)
1
2

arcsin2t2+c(c)−√4−t2+4arcsin
t
2
+c

YOU TRY IT 3.7. Now try this pair.

(a)
∫ ex

5 + ex dx (b)
∫ ex

5 + e2x dx

answertoyoutryit3.7.

(a)ln(5+ex)+c(b)
1
√

5
arctan

ex
√

5
+c

One Last Type of Substitution

There are lots of tricky substitutions that can be discussed. Later in the term, we
will use trig functions as a substitutions for x. That would seem to make things
more complicated, but by that point in the term we will have developed more
techniques to handle complicated trig integrals. For the moment we examine one
last, less than obvious substitution.
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EXAMPLE 3.1.26 (Unusual Substitution). Determine
∫ x√

x− 1
dx.

Solution. The usual substitution works, but it has a twist. As usual we let u be
the inside function

u = x− 1 so du = dx

But what do we do with the x in the numerator? Well,

u = x− 1 so x = u + 1.

Carefully replace the pieces in the original integral.∫ x√
x− 1

dx =
∫ 1√

u
· (u− 1) du =

∫ u− 1
u1/2 du =

∫
u1/2 − u−1/2 du

=
2
3

u3/2 + 2u1/2 + c

=
2(x− 1)3/2

3
+ 2(x− 1)1/2 + c.

This is a bit messy, but you should be able to spot similar substitutions.

EXAMPLE 3.1.27 (Unusual Substitution). Determine
∫

x 3
√

x + 1 dx.

Solution. This problem is very similar to the previous one. However, we will use
a different type of substitution to solve it. This same method could also be used
to solve the previous problem. Instead of letting u = x + 1 which is the inside
function, let u be the entire root:

u = 3
√

x + 1 so cubing gives u3 = x + 1

so u3 − 1 = x

and 3u2 du = dx

Wow! I like the way we get dx here! Now we can substitute. Carefully replace the
pieces in the original integral.∫

x 3
√

x + 1 dx =
∫
(u3 − 1) · u · 3u2 du =

∫
3u6 − 3u3 du

= 3
7 u7 − 3

4 u4 + c = 3
7 (x + 1)7/3 − 3

4 (+1)4/3 + c.

Slick!

YOU TRY IT 3.8. Return to Example 3.1.26. Carry out a substitution in the style of Exam-
ple 3.1.27 to solve the problem. You should get the same answer.

Change of Variables for Definite Integrals

When using u-substitution with definite integrals it is often convenient to deter-
mine the limits of integration for the variable u rather than having to convert the
antiderivative back to a function of x. Here’s the theorem that describes the pro-
cess.

THEOREM 3.1.28 (Change of Variables for Definite Integrals). If the function u = g(x) has a con-
tinuous derivative on the closed interval [a, b] and f is continuous on the range of g, then∫ b

a
f (g(x)g′(x) dx =

∫ g(b)

g(a)
f (u) du.
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A few examples will illustrate how this works.

EXAMPLE 3.1.29 (Substitution and Definite Integrals). Determine
∫ 1

0

x2

2 + 3x3 dx.

Solution. Here

u = 2 + 3x3 so du = 9x2 dx

so
1
9

du = x2 dx.

Now change the limits using u = 2 + 3x3.

Lower limit: When x = 0, u = 2 + 3(0)3 = 2

Upper limit: When x = 1, u = 2 + 3(1)3 = 5

Replace the pieces, including the limits, in the original integral.

∫ 1

0

x2

2 + 3x3 dx =
∫ 5

2

1
9
u

du =
1
9

ln |u|
∣∣∣5
2
=

1
9
[ln 5− ln 2] =

1
9

ln
5
2

.

We could also convert the answer back to the variable x, as we do with indefinite
integrals, and then evaluate the integral using the original limits. If we did that
here, we would get

∫ x2

2 + 3x3 dx =
1
9

ln |u|
∣∣∣5
2
=

1
9

ln |2 + 3x3|
∣∣∣1
0
=

1
9
[ln 5− ln 2] =

1
9

ln
5
2

,

which is the same answer we got earlier.

EXAMPLE 3.1.30 (Substitution and Definite Integrals). Determine
∫ π

0
sin 2x cos 2x dx.

Solution. Here we can let u be either sin 2x or cos 2x. If we use the former,

u = sin 2x so du = 2 cos 2x dx

so
1
2

du = cos 2x dx.

Now change the limits.

Lower limit: When x = 0, u = sin 2(0) = 0

Upper limit: When x = π/2, u = sin 2(π/2) = sin π = 0

Since the upper and lower limits of integration are the same now, we know that the
answer is 0. ∫ π

0
sin 2x cos 2x dx =

∫ 0

0

1
2

u du = 0.

EXAMPLE 3.1.31 (Substitution and Definite Integrals). Determine
∫ 3

0
x
√

9− x2 dx.

Solution. This is another simple substitution problem.

u = 9− x2 so du = −2x dx

so − 1
2

du = x dx.
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Now change the limits using u = 9− x2.

Lower limit: When x = 0, u = 9− (0)2 = 9

Upper limit: When x = 3, u = 9− (3)2 = 0

Replace the pieces, including the limits, in the original integral. The new limits
stay in the same order.

∫ 3

0
x
√

9− x2 dx =
∫ 0

9

1
2

u1/2 du =
1
3

u3/2
∣∣∣0
9
=

1
3
[0− 27] = −9.

It is worth repeating that the new limits of integration remain in the same order as
the original limits.

YOU TRY IT 3.9. Try these two problems that are a bit more theory oriented to see if you
understand u-substitution conceptually.

(a) If
∫ 4

1 f (x) dx = 5, evaluate
∫ 1

0 f (3x + 1) dx. Use u substitution.

(b) If
∫ 4

0 f (x) dx = 1, evaluate
∫ 2

0 x f (x2) dx. Use u substitution.

answertoyoutryit3.9.(a)5/3;(b)1/2.

webwork: Click to try Problems 64 through 70. Use guest login, if not in my course.

Two Trig Integrals

We begin with two key trig identities that you should memorize that will make
your life and these integrals much simpler.

Two Key Identities.

sin2 u = 1
2 −

1
2 cos 2u (Half angle formula)

cos2 u = 1
2 + 1

2 cos 2u

The half angle formulas are used to integrate sin2 u or cos2 u in the obvious way.

EXAMPLE 3.1.32. Determine
∫

cos2(8x) dx.

Solution. Use equation (1) above with u = 8x. Note the use of a ‘mental adjust-
ment.’ ∫

cos2(8x) dx =
∫

1
2 + 1

2 cos(16x) dx = 1
2 x + 1

32 sin(16x) + c.

EXAMPLE 3.1.33. Determine
∫ 1/4

0
sin2(πx) dx.

Solution. Use equation (1) above with u = πx. Note the use of a ‘mental adjust-
ment.’∫ 1/4

0
sin2(πx) dx =

∫ 1/4

0

1
2 −

1
2 cos(2πx) dx = 1

2 x− 1
4π sin(2πx)

∣∣∣1/4

0
= 1

8 −
1

4π .

Multi-Substitutions

Sometimes you need to use more than one substitution. Laissez les bons temps
rouler!
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EXAMPLE 3.1.34. Determine
∫

x2 cos2(x3) sin(x3) dx. Start with the obvious substitution:

u = x3.

Solution. Let u = x3 and du = 3x2 dx. We get∫
x2 cos2(x3) sin(x3) dx =

∫ 1
3

cos2 u sin u du.

Now let w = cos u and dw = − sin u du. Then∫ 1
3

cos2 u sin u du =
∫
−1

3
w2 dw = −1

9
w3 + c = −1

9
cos3 u + c = −1

9
cos3(x3) + c.

EXAMPLE 3.1.35. This one is sweet: Gotta’ love math: Determine
∫ 1√

1 +
√

1 + x
dx. Start

with the substitution: u =
√

1 + x.

Solution. If we let u =
√

1 + x, then du = 1
2
√

1+x
so 2
√

1 + x du = dx So
2u du = dx. Whoa! Now∫ 1√

1 +
√

1 + x
dx =

∫ 2u√
1 + u

Like Example 3.1.26

= 2
[

2
3
(u + 1)3/2 + 2(u + 1)1/2

]
+ c

=
4
3
(1 +

√
1 + x)3/2 − 4(1 +

√
1 + x)1/2 + c.

YOU TRY IT 3.10 (Integral Mixer). Evaluate these definite integrals. A number of techniques
are required. Switch the limits of integration when appropriate.

(a)
∫ 3

0

1√
4− x

dx (b)
∫ 1

0

1√
4− x2

dx (c)
∫ √3

0

x
9 + x4 dx

(d)
∫ 1

0

x9

1 + x20 dx (e)
∫ 2

0

2x
9 + x2 dx (f )

∫ arctan 2x
1 + 4x2 dx (g)

∫ 3

0

tan
√

x√
x

dx

answertoyoutryit3.10.

(a)2(b)
π

6
(c)

π

24
(d)

π

40
(e)ln

13
9

(f)
(arctan2x)2

4
+c(g)ln2


