My Office Hours: M & W 2:30–4:00, Tu 2:00–3:30, & F 1:30–2:30 or by appointment. **Math Intern:** Sun: 2:00–5:00, 7:00–10pm; Mon thru Thu: 3:00–5:30 and 7:00–10:30pm in Lansing 310. Website: http://math.hws.edu/~mitchell/Math131F15/index.html.

Practice

Today we will discuss arc length and finish it next time. Review 6.4 on Volume by Shells as needed. and read Section 6.5. Concentrate on Examples 1 through 4. Begin Section 6.6—we will cover only lifting problems: See Examples 2–4.

- 1. Volume practice: Try page 412ff #27, 29, 31, 35, 39.
- **2.** Show that the exact arc length of y = f(x) = x on [0,1] is $\sqrt{2}$.
- 3. Show that the exact arc length of y = 2 3x on [-2, 1] is $3\sqrt{10}$. Since this curve is a straight line segment, check your answer by using the distance formula!
- 4. Arc Length practice: Page 418 #3, 5, 7, 9.

Hand In Next Class

Possible answers:
$$\pi \ln 9$$
, $2\pi \ln 17$, $\pi \ln 17$, 2π , 4π , $1+\sqrt{2}$, $1-\sqrt{2}$, $\ln(1+\sqrt{2})$, Yes, $\frac{2}{27}(10^{3/2}-1)$, No, $\frac{1}{4}\ln(-4+\sqrt{17})$, $511/9$, $1022/27$, $1024/27$

- o. Remember that there is a new WeBWorK assignment set Day17 due next Wednesday. And also remember that set Day16 closes Thursday evening.
- **1. Do by shells:** A small canal buoy is formed by taking the region in the first quadrant bounded by the y-axis, the parabola $y = 2x^2$, and the line y = 5 3x and rotating it about the y-axis. (Units are feet.) Find the volume of this buoy.
- **2.** The region bounded by the curves $y = \frac{1}{1+x^2}$, the *y*-axis, x = 4, and the *x*-axis is revolved around *y*-axis. Find the volume. One method is easier.
- 3. Find the length of $f(x) = 2x^{3/2} + 1$ on the interval [0,7]. (Use a *u*-substitution.)
- **4.** Find the arc length of $f(x) = \ln \sec x$ on $[0, \pi/4]$. (Use a trig id.) This is a WeBWorK Day 17 problem.
- **5.** Set up the arc length integral for $y = f(x) = x^2$ on [0, 2]. Can you do the integration?

Math 131 Day 17 Quiz: Name:

1. Rotation about the *x***-axis.** Let *R* be the *entire* region enclosed by $y = x^2$ and $y = 2 - x^2$ in the upper half-plane. Rotate *R* about the *x*-axis. The resulting volume is given by:

(a)
$$\pi \int_{-1}^{1} (x^2)^2 dx - \pi \int_{-1}^{1} (2 - x^2)^2 dx$$

(a)
$$\pi \int_{-1}^{1} (x^2)^2 dx - \pi \int_{-1}^{1} (2 - x^2)^2 dx$$
 (b) $\pi \int_{0}^{1} (2 - x^2)^2 dx - \pi \int_{0}^{1} (x^2)^2 dx$ (c) $\pi \int_{-1}^{1} (2 - x^2)^2 dx + \pi \int_{-1}^{1} (x^2)^2 dx$ (d) $\pi \int_{-1}^{1} (2 - x^2)^2 dx - \pi \int_{-1}^{1} (x^2)^2 dx$

(c)
$$\pi \int_{-1}^{1} (2-x^2)^2 dx + \pi \int_{-1}^{1} (x^2)^2 dx$$

(d)
$$\pi \int_{1}^{1} (2-x^2)^2 dx - \pi \int_{1}^{1} (x^2)^2 dx$$

(e)
$$\pi \int_{0}^{1} (\sqrt{y})^{2} dy + \pi \int_{1}^{2} (\sqrt{2-y})^{2} dy$$
 (f) None of these

2. Rotation about the *x***-axis.** Let *S* be the region enclosed by the *x*-axis, $y = \sqrt{x}$, and y = 2 - x. The volume generated by revolving *S* about the *x*-axis is:

(a)
$$\pi \int_0^1 (\sqrt{x})^2 dx - \pi \int_1^2 (2-x)^2 dx$$

(a)
$$\pi \int_0^1 (\sqrt{x})^2 dx - \pi \int_1^2 (2-x)^2 dx$$
 (b) $2\pi \int_0^1 x(2-x) dx - 2\pi \int_0^1 x\sqrt{x} dx$

(c)
$$\pi \int_0^1 (\sqrt{x})^2 dx + \pi \int_1^2 (2-x)^2 dx$$
 (d) $\pi \int_0^1 (2-y)^2 - (y^2)^2 dy$

(d)
$$\pi \int_0^1 (2-y)^2 - (y^2)^2 dy$$

(e)
$$\pi \int_0^2 (\sqrt{x})^2 dx - \pi \int_1^2 (2-x)^2 dx$$
 (f) None of these

3. Rotation about the *y***-axis.** Let *T* be the region enclosed by the *y*-axis, $y = \sqrt{x}$, and y = 2 - x (a different region than in Problem 2). The volume generated by revolving *T* about the *y*-axis is:

(a)
$$\pi \int_0^2 (y^2)^2 dy - \pi \int_0^2 (2-y)^2 dy$$

(a)
$$\pi \int_0^2 (y^2)^2 dy - \pi \int_0^2 (2-y)^2 dy$$
 (b) $2\pi \int_0^1 x(2-x)^2 dx - 2\pi \int_0^1 x (\sqrt{x})^2 dx$

(c)
$$\pi \int_0^1 (\sqrt{x})^2 dx + \pi \int_1^2 (2-x)^2 dx$$
 (d) $\pi \int_0^1 (2-y)^2 dy + \pi \int_1^2 (y^2)^2 dy$

(d)
$$\pi \int_0^1 (2-y)^2 dy + \pi \int_1^2 (y^2)^2 dy$$

(e)
$$2\pi \int_0^1 x(2-x) dx - 2\pi \int_0^1 x(\sqrt{x}) dx$$
 (f) None of these

4. Rotation about the *y***-axis.** Let *U* be the region enclosed by the *y*-axis, the *x*-axis, y = x - 2, and y = 4 - x. The volume generated by revolving *U* about the *y*-axis is:

(a)
$$\pi \int_0^1 (y-2)^2 dy + \pi \int_1^4 (4-y)^2 dy$$

(a)
$$\pi \int_0^1 (y-2)^2 dy + \pi \int_1^4 (4-y)^2 dy$$
 (b) $2\pi \int_0^3 x(4-x)^2 dx - 2\pi \int_2^3 x(x-2)^2 dx$

(c)
$$2\pi \int_0^4 x(4-x) dx - 2\pi \int_2^3 x(x-2) dx$$
 (d) a and c

(f) None of these