Math 131 Lab 2

Quick answers on back. Check with the TA or me!!! Remember full answers are posted online (and Class Notes).

- **0.** 1 minute review: Find the following derivatives (answers on back):

 - a) $\frac{d}{dx}[\sin^6(x)]$ b) $\frac{d}{dx}[\arcsin(3x^2)]$
- 1. a) There's no reason why in a Riemann sum $\sum_{i=1}^{n} f(x_i) \Delta x$ the function f(x) needs to non-negative. Using the two graphs of f below, draw Lower(4) (the lower Riemann sum) and Upper(4) (upper sum) and evaluate each. Make sure you check that your figure is correct with me or a TA! In the final graph, shade the net area.

- **b)** Estimate Lower(4) and Upper(4).
- c) What do these sums represent geometrically?
- d) The function f(x) is a straight line in this problem. Figure out the equation of f(x).
- e) Why does the sum Lower(n) use right endpoints?
- f) Set up and simplify Lower(n). Use the table below to help. And then simplify.

f(x)	[a,b]	$\Delta x = \frac{b-a}{n}$	$x_i = a + i\Delta x$	$f(x_i)$	$Lower(n) = \sum_{i=1}^{n} f(x_i) \Delta x$
	[0, 4]				

- g) Evaluate $\int_0^4 f(x) dx$ by evaluating $\lim_{n \to \infty} \text{Lower}(n)$. Compare your answer to the net area in the figure above.
- **2.** a) Find the formula for regular right-hand Riemann sum Right(n) for $f(x) = x^2 x$ on [1, 4]. Make sure to simplify Right(n) as much as possible.
 - **b)** Evaluate the definite integral $\int_1^4 x^2 x \, dx$ by evaluating $\lim_{n \to \infty} \text{Right}(n)$.
- **3.** Use this graph of y = f(x)

1

- **a)** $\int_0^5 f(x) dx$ **b)** $\int_0^{10} f(x) dx$ **c)** $\int_5^{14} f(x) dx$ **d)** $\int_0^5 |f(x)| dx$
- e) Is the answer to (a) or (d) the **Total Area** between f and the x-axis on [0,5]?

4. Suppose that $\int_{-4}^{6} f(x) dx = 5$, $\int_{-4}^{6} g(x) dx = -2$, and $\int_{-4}^{6} h(x) dx = 7$. Evaluate each of the following expressions by using properties of the integral. The answer to part (b) is NOT 7.

a)
$$\int_{-4}^{6} (h(x) - 4g(x)) dx$$

b)
$$\int_{-4}^{6} f(x) + 2 dx$$

c)
$$\int_{6}^{-4} 2f(x) dx$$

a)
$$\int_{-4}^{6} (h(x) - 4g(x)) dx$$
 b) $\int_{-4}^{6} f(x) + 2 dx$ c) $\int_{6}^{-4} 2f(x) dx$ d) $\int_{-4}^{-4} e^{f(x)} dx$ e) $\int_{0}^{10} f(x - 4) dx$

- 5. Interpolating Riemann sums. So far we've used functions or their graphs to generate the data for a Riemann sum. But sometimes all we have are data in table. For example we might have data that were recorded from a speedometer or a water meter. The data below are velocities that were recorded by a bicyclist every 10 seconds for a total of one minute. Use her data (on back of page) to estimate the area under her velocity curve.
 - a) Find Right(6). For each 10-second interval use the right endpoint for the height. What do negative heights mean?
 - b) Then try Lower(6). For each 10-second interval use the appropriate endpoint that gives the min value during the interval. Which is easier?

			7	Γime (s	s)	0	10	20	30	40	50	60					
			7	Velocit;	y (m/s)	2	4	6	2	-2	-4	2					
6 -		(•		Rig	$_{ m ght}($	6)	•			5 7				I	ower(6	3)
4 -											4 -						
0				:										:			
2 -											2 🔷 · ·			•			
0 -	10	2	20	30	40	50	60)		(0 +	10	20	30	40	50	60
-2 -							:			-:	2						:
-4 -											4						
	:					:								•			

- c) What is the physical interpretation of $v \times \Delta t$ in your sum? So a Riemann sum can represent something different than area. In this case, the area under the velocity curve represents what physical quantity?
- 6. Mental Adjustments. Sometimes a problem requires doing an antiderivative that is slightly different from those in our known list of antiderivatives. For example, $\int \sec(3t)\tan(3t) dt$ looks like it ought to have $F(t) = \sec(3t) + c$ as an antiderivative. However, if we check our answer, we see that $F'(t) = \sec(3t)\tan(3t) \cdot 3$. We are off by a factor of 3 because of the chain rule. So we need to 'adjust' the antiderivative by multiplying by $\frac{1}{3}$. Let $F(t) = \frac{1}{3}\sec(3t) + c$. Now $F'(t) = \frac{1}{3}\sec(3t)\tan(3t) \cdot 3 = \sec(3t)\tan(3t)$ which is what we want. Here's another: $\int \sec^2(-6x) dx = -\frac{1}{6}\tan(-6x) + \cot(-6x)$ c. What is the rule for the adjustment? Do these by using a "mental adjustment" of each by an appropriate constant. (Check your antiderivatives by differentiating!)

a)
$$\int \sin(2x) \, dx$$

b)
$$\int 3e^{-6t} dt$$

a)
$$\int \sin(2x) dx$$
 b) $\int 3e^{-6t} dt$ c) $\int \sec^2(\pi x) dx$ d) $\int \cos\frac{3\theta}{2} d\theta$ e) $\int \frac{1}{2x} dx$

d)
$$\int \cos \frac{3\theta}{2} d\theta$$

$$e) \int \frac{1}{2x} \, dx$$

- 7. Evaluate the definite integral $\int_0^2 4x^3 5 dx$ by evaluating $\lim_{n \to \infty} \text{Right}(n)$.
- **8.** a) Assume that a is a positive number. Draw the region represented by $\int_{-\infty}^{\infty} x \, dx$.
 - b) Use geometry (not Riemann sums) to determine a formula for $\int_0^a x \, dx$ in terms of a.
 - c) Do the same for $\int_0^a x + 2 dx$.

__Brief Partial Answers _____

- **0.** Use the chain rule. (a) $6\sin^5(x)\cos(x)$; (b) $\frac{6x}{\sqrt{1-9x^4}}$. Note the "square" of x^2 .
 - 1 a) Lower(4) = 1.0; (b) Upper(4) = 7.0. (f) $4 \frac{12}{n}$. 2) $\int_{1}^{4} x^{2} x \, dx = \lim_{n \to \infty} \text{Right}(n) = \lim_{n \to \infty} \frac{27}{2} + \frac{18}{n} + \frac{9}{2n^{2}} = 13.5$. 3) $\pi 4.5$; -7; 3.5; $\pi + 4.5$; d. 4) 15; 25; -10; 0; 5. 5 a) Right(6) = 80 m. (b) Lower(6) = -20 m. 6) $-\frac{1}{2}\cos(2x) + c$; $-\frac{1}{2}e^{-6t} + c$; $\frac{1}{\pi}\tan(\pi x) + c$; $\frac{2}{3}\sin\frac{3\theta}{2} + c$; $\frac{1}{2}\ln|2x| + c$. 7) $\lim_{n \to \infty} 6 + \frac{32}{n} + \frac{16}{n^{2}} = 6$.

Math 131 Lab 2 Answers

See problem 3. Notice that the rectangle bases are always on the x axis.

- **0.** Answer: The derivatives all require the chain rule. Note the "square" in (b).
 - **a)** $6\sin^5(x)\cos(x)$
- **b)** $\frac{6x}{\sqrt{1-9x^4}}$
- 1. a) Note: The bases of the rectangles are always on the x axis, which may not be the bottom of the grid!!!

b) Multiplying the heights by $\Delta x = 1$ and adding gives

Lower(4) =
$$2.5 \cdot 1 + 1 \cdot 1 + (-0.5) \cdot 1 + (-2) \cdot 1 = 1.0$$

Upper(4) =
$$4 \cdot 1 + 2.5 \cdot 1 + 1 \cdot 1 + (-0.5) \cdot 1 = 7.0$$
.

- c) The rectangles below the axis produce 'negative' area, so the result is **net area**, that is area above the x-axis minus the area below it.
- d) It passes through the points (0,4) and (4,-2) so the slope is $m = \frac{4-(-2)}{0-4} = -\frac{3}{2}$. The intercept is 4 so the equation is $f(x) = -\frac{3}{2}x + 4$.
- e) f(x) is decreasing so the lowest point in each interval is at the right end.

$$\mathbf{f}) \begin{array}{|c|c|c|c|c|}\hline f(x) & [a,b] & \Delta x = \frac{b-a}{n} & x_i = a + i\Delta x & f(x_i) & \mathrm{Right}(n) = \sum_{i=1}^n f(x_i)\Delta x \\ \hline -\frac{3}{2}x + 4 & [0,4] & \frac{4-0}{n} = \frac{4}{n} & 0 + \frac{4i}{n} = \frac{4i}{n} & -\frac{3}{2} \cdot \frac{4i}{n} + 4 = -\frac{6i}{n} + 4 & \sum_{i=1}^n \left(-\frac{6i}{n} + 4 \right) \frac{4}{n} \\ \hline \end{array}$$

$$Lower(n) = \sum_{i=1}^{n} \left(-\frac{6i}{n} + 4 \right) \frac{4}{n} = \left(-\frac{6}{n} \right) \frac{4}{n} \sum_{i=1}^{n} i + \frac{4}{n} \sum_{i=1}^{n} 4 = -\frac{24}{n^2} \left[\frac{n(n+1)}{2} \right] + \frac{4}{n} (4n)$$

$$= -\frac{12(n+1)}{n} + 16 = -12 - \frac{12}{n} + 16 = 4 - \frac{12}{n}.$$

g) $\lim_{n\to\infty} \text{Lower}(n) = \lim_{n\to\infty} 4 - \frac{12}{n} = 4$. The net area is the the area of the big triangle above the x-axis minus the area of the triangle below the axis. The line crosses the x-axis at $\frac{8}{3}$, so

net area =
$$\frac{1}{2} \cdot \frac{8}{3} \cdot 4 - \frac{1}{2} \cdot \frac{4}{3} \cdot 2 = \frac{16}{3} - \frac{4}{3} = 4$$
.

3

So the net area equals $\int_0^4 -\frac{3}{2}x + 4 dx = \lim_{n \to \infty} \text{Lower}(n) = 4$.

$$Right(n) = \sum_{i=1}^{n} \left[\frac{9i^2}{n^2} + \frac{3i}{n} \right] \cdot \frac{3}{n} = \frac{27}{n^3} \sum_{i=1}^{n} i^2 + \frac{9}{n^2} \sum_{i=1}^{n} i = \frac{27}{n^3} \left[\frac{n(n+1)(2n+1)}{6} \right] + \frac{9}{n^2} \left[\frac{n(n+1)}{2} \right]$$

$$= 9 \left[\frac{2n^2 + 3n + 1}{2n^2} \right] + \frac{9n + 9}{2n} = 9 + \frac{27}{2n} + \frac{9}{2n^2} + \frac{9}{2} + \frac{9}{2n} = \frac{27}{2} + \frac{18}{n} + \frac{9}{2n^2}$$

b) Since f is continuous we can just take the limit of Right(n) to get the definite integral.

$$\int_{1}^{4} x^{2} - x \, dx = \lim_{n \to \infty} \text{Right}(n) = \lim_{n \to \infty} \frac{27}{2} + \frac{18}{n} + \frac{9}{2n^{2}} = 13.5$$

3. The integral is 'net area.' So using quarter-circles and triangles,

a)
$$\int_0^5 f(x) dx = \int_0^2 f(x) dx + \int_2^5 f(x) dx = \frac{\pi(2)^2}{4} + \frac{1}{2}(3)(-3) = \pi - 4.5$$

b)
$$\int_{2}^{10} f(x) dx = \int_{2}^{8} f(x) dx + \int_{8}^{10} f(x) dx = \frac{1}{2}(6)(-3) + \frac{1}{2}(2)(2) = -7$$

c)
$$\int_{5}^{14} f(x) dx = \int_{5}^{8} f(x) dx + \int_{8}^{10} f(x) dx + \int_{10}^{12} f(x) dx + \int_{12}^{14} f(x) dx = \frac{1}{2}(3)(-3) + \frac{1}{2}(2)(2) + (2)(2) + \frac{1}{2}(2)(2) = 3.5$$

d)
$$\int_0^5 |f(x)| dx = \int_0^2 f(x) dx + \int_2^5 -f(x) dx = \frac{\pi(2)^2}{4} + \frac{1}{2}(3)(3) = \pi + 4.5$$

e) (d), all regions are treated as positive area.

4. Use integral properties. In (b) $\int_{-4}^{6} 2 \, dx$ is a rectangle with height 2 and base from x = -4 to 6.

a)
$$\int_{-4}^{6} (h(x) - 4g(x)) dx = \int_{-4}^{6} (h(x) dx - 4 \int_{-4}^{6} g(x)) dx = 7 - 4 * (-2) = 15$$

b)
$$\int_{-4}^{6} f(x) + 2 dx = \int_{-4}^{6} f(x) dx + \int_{-4}^{6} 2 dx = 5 + 2(b - a) = 5 + 2(6 - (-4)) = 25$$

c)
$$\int_{6}^{-4} 2f(x) dx = -\int_{-4}^{6} 2f(x) dx = -2 \int_{-4}^{6} f(x) dx = -2 \cdot 5 = -10$$

d)
$$\int_{-4}^{-4} e^{f(x)} dx = 0$$
 same endpoints

e)
$$\int_0^{10} f(x-4), dx = \int_{-4}^6 f(x), dx = 5$$
 graph was shifted

5.

a) $\Delta x = 10$. Use the right-hand endpoints

$$Right(6) = 4 \cdot 10 + 6 \cdot 10 + 2 \cdot 10 - 2 \cdot 10 - 4 \cdot 10 + 2 \cdot 10 = 80 \text{ m}.$$

b) For Lower(n) pick the smallest velocity in each 10-second interval.

Lower(6) =
$$2 \cdot 10 + 4 \cdot 10 + 2 \cdot 10 - 2 \cdot 10 - 4 \cdot 10 - 4 \cdot 10 = -20$$
 m.

- c) Velocity × time equals distance travelled. Area under the curve represents the NET distance travelled by the
- 6. Multiply the antiderivative by the reciprocal of the constant on the "inside" of the function (to reverse the chain

a)
$$\int \sin(2x) dx = -\frac{1}{2}\cos(2x) + c$$

a)
$$\int \sin(2x) dx = -\frac{1}{2}\cos(2x) + c$$
 b) $\int 3e^{-6t} dt = -\frac{3}{6}e^{-6t} + c = -\frac{1}{2}e^{-6t} + c$

c)
$$\int \sec^2(\pi x) dx = \frac{1}{\pi} \tan(\pi x) + c$$
 d)
$$\int \cos \frac{3\theta}{2} d\theta = \frac{2}{3} \sin \frac{3\theta}{2} + c$$

d)
$$\int \cos \frac{3\theta}{2} d\theta = \frac{2}{3} \sin \frac{3\theta}{2} + c$$

e)
$$\int \frac{1}{2x} dx = \frac{1}{2} \ln|2x| + c$$

7. Do the preliminary calculations:

f(x)	[a,b]	$\Delta x = \frac{b-a}{n}$	$x_i = a + i\Delta x$	$f(x_i)$
$4x^3 - 5$	[0, 2]	$\frac{2-0}{n} = \frac{2}{n}$	$\frac{2i}{n}$	$4\left(\frac{2i}{n}\right)^3 - 5$

$$\begin{aligned} \operatorname{Right}(n) &= \sum_{i=1}^n \left[4 \left(\frac{2i}{n} \right)^3 - 5 \right] \cdot \frac{2}{n} = \frac{64}{n^4} \sum_{i=1}^n i^3 - \frac{10}{n} \sum_{i=1}^n 1 = \frac{64}{n^4} \left[\frac{n^2(n+1)^2}{4} \right] - \frac{10}{n} \cdot n \\ &= 16 \left[\frac{n^2 + 2n + 1}{n^2} \right] - 10 = 16 + \frac{32}{n} + \frac{16}{n^2} - 10 = 6 + \frac{32}{n} + \frac{16}{n^2} \end{aligned}$$

Since f is continuous we can just take the limit of Right(n) to get the definite integral.

$$\int_0^2 4x^3 - 5 \, dx = \lim_{n \to \infty} \text{Right}(n) = \lim_{n \to \infty} 6 + \frac{32}{n} + \frac{16}{n^2} = 6.$$

- **8.** a) The region is a right triangle with base and height both equal to a, as shown.
 - **b)** Since $\int_0^a x \, dx$ represents the net area (here the entire area is positive), then $\int_0^a x \, dx = \frac{a^2}{2}$ since the figure is a

- c) The region is a right trapezoid, as shown.
 - $\int_{a}^{a} x \, dx = \text{Net Area} = 2a + \frac{a^{2}}{2} \text{ since the figure is a right triangle.}$