
Math 131 Lab 14: Series

1. Determine whether these arguments are correct. If not, correct them.

a) Determine whether

∞∑
n=1

(−1)n2n4

6n9 − 1
converges absolutely, conditionally, or diverges. ARGUMENT: Use the alternat-

ing series test with an = 2n4

6n9−1 > 0. Check the two conditions: (i): lim
n→∞

an = lim
n→∞

2n4

6n9 − 1
= lim

n→∞

2

6n5
= 0.X(ii):

Decreasing? Take the derivative! (You can’t just say the bottom gets bigger since the top gets bigger, too!)

f(x) = 2x4

6x9−1 so

f ′(x) =
8x3(6x9 − 1)− (2x4)54x8

(6x9 − 1)2
=
−60x12 − 8x3

(6x9 − 1)2
< 0

so f(x) and an are decreasing.XSo by the Alternating Series Test the series converges conditionally.

b) Determine whether

∞∑
n=1

(−1)n(2n + 1)

6n + 2
converges absolutely, conditionally, or diverges. ARGUMENT: Notice

∞∑
n=1

∣∣∣∣ (−1)n(2n + 1)

6n + 2

∣∣∣∣ =

∞∑
n=1

2n + 1

6n + 2
= lim

n→∞

2n + 1

6n + 2

HPwrs
= lim

n→∞

2n

6n
=

1

3
. So the series converges absolutely.

c) Determine the radius and interval of convergence for the power series
∞∑

n=0

xn

3n2 + 1
. ARGUMENT: We know that

the series converges at its center a = 0. For any x 6= 0

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

3(n + 1)2 + 1
· 3n2 + 1

xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ 3n2 + 1

3n2 + 6n + 4
· x
∣∣∣∣ HPwrs

= lim
n→∞

∣∣∣∣3n2

3n2
· x
∣∣∣∣ = |x|.

By the ratio test, the series converges if |x| < 1 and diverges when |x| > 1. The radius of convergence is

R = 1. Check the endpoints a − R = 0 − 1 = −1 and a + R = 0 + 1 = 1. For x = 1: We get

∞∑
n=0

1

3n2 + 1
.

Since 0 < 1
3n2+1 < 1

n2 and since

∞∑
n=0

1

n2
converges (p-series, p = 2 > 1), then by direct comparison

∞∑
n=0

1

3n2 + 1

converges. For x = −1: We get

∞∑
n=0

(−1)n

3n2 + 1
. However, we just saw that

∞∑
n=0

∣∣∣∣ (−1)n

3n2 + 1

∣∣∣∣ =

∞∑
n=0

1

3n2 + 1
converges.

Hence,

∞∑
n=0

(−1)n

3n2 + 1
converges by the absolute convergence test. The interval of convergence is [−1, 1] and includes

both endpoints.

2. Determine whether these series converge absolutely, conditionally, or not at all. (Hint: Remember to use theRatio
Test Extension for absolute convergence/divergence, when it is appropriate.)

a)

∞∑
n=1

(−1)n(2n + 1)

3n2 + 2
b)

∞∑
n=1

(−1)nn2n

3n+1
c)

∞∑
n=1

n!

(−3)n

3. Find the radius R and interval of convergence for each of these series. Remember the endpoints.

a)

∞∑
n=1

(2x)n

n2
b)

∞∑
n=1

(−1)nn!xn

4n
c)

∞∑
n=1

(−1)nx2n

9n

d)

∞∑
n=0

(x− 4)n

n + 1
e)

∞∑
n=1

n(x− 1)n

32n
f)

∞∑
n=1

n!xn

(2n)!

4. EXTRA FUN: If you finish early: Find the radius of convergence R for

∞∑
n=1

n!xn

1 · 3 · 5 · · · (2n + 1)
and for

∞∑
n=1

nnxn

n!
.

Brief Answers
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1. a) Wrong. What didn’t the student check? (b) Wrong, in so many ways. (c) Correct. This is a model of how I want
your answers in #3 to be!

2. Conditional, Absolute, Diverge.

3. Lots of justification (words) required!

a) [−1/2, 1/2] b) {0} c) (−3, 3) d) [3, 5) e) (−8, 10) f) (−∞,∞)

4. Ask.

Background

1. Power Series. For a power series

∞∑
n=0

an(x− a)n centered at a, precisely one of the following is true.

a) The series converges only at x = a.

b) There is a real number R > 0 so that the series converges absolutely for |x− a| < R and diverges for |x− a| > R.

c) The series converges for all x.

NOTE: In case (b) the power series may converge at both endpoints a − R and a + R, either endpoint, or
neither endpoint. You must check the convergence at the endpoints separately. Here’s what the intervals of
convergence can look like:

[a− r, a + r] [a− r, a + r) (a− r, a + r] (a− r, a + r)

2. The Ratio Test Extension. Assume that

∞∑
n=1

an is a series with non-zero terms and let r = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣.
1. If r < 1, then the series

∑
an converges absolutely.

2. If r > 1 (including ∞), then the series
∑

an diverges.

3. If r = 1, then the test is inconclusive. The series may converge or diverge.

3. The Alternating Series Test. Assume an > 0. The alternating series

∞∑
n=1

(−1)nan converges if the follow two

conditions hold:

a) lim
n→∞

an = 0

b) an+1 ≤ an for all n (i.e., an is decreasing which can also be tested by showing f ′(x) < 0).

4. Absolute Convergence Test. If the series

∞∑
n=1

|an| converges, then so does the series

∞∑
n=1

an.
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Lab 14 Answers

1. a) Wrong. The student never checked for absolute convergence. ARGUMENT: First we check absolute convergence.
∞∑

n=1

∣∣∣∣ (−1)n(2n4)

6n9 − 1

∣∣∣∣ =

∞∑
n=1

2n4

6n9 − 1
. Notice that 2n4+1

6n9+2 ≈
1
n5 . So let’s use the limit comparison test. The terms of

the series are positive and

lim
n→∞

an
bn

= lim
n→∞

2n4

6n9 − 1
· n

5

1
= lim

n→∞

2n9

6n9 − 1

HPwrs
= lim

n→∞

2n9

6n9
=

1

3
.

Since
∑∞

n=1
1
n5 converges (p-series with p = 5 > 1), then

∞∑
n=1

∣∣∣∣ (−1)n(2n4)

6n9 − 1

∣∣∣∣ converges by the limit comparison test.

So the series converges absolutely.

b) Wrong. Puleeze never do this! You might start with the alternating series test with an = 2n+1
6n+2 6= 0. Check the

two conditions (i): lim
n→∞

an = lim
n→∞

2n + 1

6n + 2

HPwrs
= lim

n→∞

2n

6n
=

1

3
. So the series diverges by the nth term test (not the

alternating series test). It’s the nth term test.

c) Correct. This is what I want your answers in #3 to be!

2. a)
∑∞

n=1
(−1)n(2n+1)

3n2+2 . The series is similar to
∑∞

n=1
1
n , so it probably will not converge absolutely. ARGUMENT: Use

the alternating series test with an = 2n+1
3n2+2 > 0. Check the two conditions: (i): lim

n→∞
an = lim

n→∞

2n + 1

3n2 + 2

HPwrs
=

lim
n→∞

2n

3n2
= lim

n→∞

2

3n
= 0.X(ii): Decreasing? Take the derivative. (You can’t just say the bottom gets bigger since

the top gets bigger, too!) f(x) = 2x+1
3x2+2 so

f ′(x) =
2(3x2 + 2)− (2x + 1)6x

(3x2 + 2)2
=
−6x2 − 6x2 + 4

(3x2 + 2)2
< 0X (x ≥ 1)

so f(x) and an are decreasing. By the Alternating Series Test the series converges. Now check absolute convergence.∑∞
n=1

∣∣∣ (−1)n(2n+1)
3n2+2

∣∣∣ =
∑∞

n=1
2n+1
3n2+2 . Compare to

∑∞
n=1

1
n . Notice both 1

n > 0 and 2n+1
3n2+2 > 0. Then

lim
n→∞

an
bn

= lim
n→∞

2n + 1

3n2 + 2
· n

1
= lim

n→∞

2n2 + n

3n2 + 2

HPwrs
= lim

n→∞

2n2

3n2
=

2

3
> 0.

Since
∑∞

n=0
1
n diverges by the p-series test (p = 1), then by the limit comparison test

∑∞
n=0

2n+1
3n2+1 also diverges.

So the series is conditionally convergent.

b)
∑∞

n=1
(−1)nn2n

3n+1 . Because of the nth powers, try the ratio test extension first (testing for absolute convergence)

with an = n2n

3n+1 6= 0.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1(n + 1)2n+1

3n+2
· 3n+1

(−1)nn2n

∣∣∣∣ = lim
n→∞

∣∣∣∣2(n + 1)

3n

∣∣∣∣ HPwrs
= lim

n→∞

2n

3n
=

2

3
< 1.

By the ratio test the series converges absolutely.

c)
∑∞

n=1
n!

(−3)n . Because of the nth power and factorial, try the ratio test first (testing for absolute convergence)

with an = n!
(−3)n 6= 0.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)!

(−3)n+1
· (−3)n

n!

∣∣∣∣ = lim
n→∞

∣∣∣∣n + 1

3

∣∣∣∣ =∞ > 1.

By the ratio test the series diverges.
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3. a)

∞∑
n=0

(2x)n

n2
. ARGUMENT: The series converges at its center a = 0. Apply the ratio test. For any x 6= 0

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (2x)n+1

(n + 1)2
· n2

(2x)n

∣∣∣∣ = lim
n→∞

∣∣∣∣ n22x

(n + 1)2

∣∣∣∣ = lim
n→∞

∣∣∣∣ n2

n2 + 2n + 1
· 2x
∣∣∣∣ HPwrs

= lim
n→∞

∣∣∣∣n2

n2
· 2x
∣∣∣∣ = 2|x|.

By the ratio test, the series converges if 2|x| < 1 ⇐⇒ |x| < 1
2 and diverges when |x| > 1

2 . The radius of
convergence is R = 1

2 . Check the endpoints − 1
2 and 1

2? For x = 1
2 : We get

∞∑
n=0

(2( 1
2 ))n

n2
=

∞∑
n=0

1

n2

which converges by the p-series test (p = 2 > 1). For x = − 1
2 : We get

∞∑
n=0

(2(− 1
2 ))n

n2
=

∞∑
n=0

(−1)n

n2

But this series converges absolutely (we just did it). The interval of convergence is [− 1
2 ,

1
2 ].

b)
∞∑

n=0

(−1)nn!xn

4n
. ARGUMENT: The series converges at its center a = 0. Apply the ratio test. For any x 6= 0

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1(n + 1)!xn+1

4(n + 1)
· 4n

(−1)nn!xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)n

n + 1
· x
∣∣∣∣ = lim

n→∞
|nx| =∞ > 1.

By the ratio test, the series diverges when |x| > 0. The radius of convergence is R = 0. The series only converges
at x = 0.

c)

∞∑
n=0

(−1)nx2n

9n
. The series converges at its center a = 0. Apply the ratio test. For any x 6= 0

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1x2(n+1)

9n+1
· 9n

(−1)nx2n

∣∣∣∣ = lim
n→∞

∣∣∣∣x2

9

∣∣∣∣ .
By the ratio test, the series converges if |x

2

9 | < 1 ⇐⇒ |x2| < 9 ⇐⇒ |x| < 3 and diverges when |x| > 3. The
radius of convergence is R = 3. Check the endpoints a−R = 0− 3 = −3 and a + R = 0 + 3 = 3. For x = 3: We
get

∞∑
n=0

(−1)n32n

9n
=

∞∑
n=0

(−1)n

which diverges by the geometric series test (|r| = 1). The same is true for x = −3: Again we get

∞∑
n=0

(−1)n(−3)2n

9n
=

∞∑
n=0

(−1)n.

The interval of convergence is (−3, 3).

d)

∞∑
n=1

(x− 4)n

n + 1
. ARGUMENT: The series converges at its center a = 4. Apply the ratio test. For any x 6= 4

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (x− 4)n+1

n + 2
· n + 1

(x− 4)n

∣∣∣∣ = lim
n→∞

∣∣∣∣n + 2

n + 1
· (x− 4)

∣∣∣∣ HPwrs
= lim

n→∞

∣∣∣n
n
· (x− 4)

∣∣∣ = |x− 4|.

By the ratio test, the series converges if |x− 4| < 1 and diverges when |x− 4| > 1. The radius of convergence is
R = 1. Check the endpoints: a−R = 4− 1 = 3 and a + R = 4 + 1 = 5. For x = 3: We get

∞∑
n=0

(−1)n

n + 1
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Use the alternating series test with an = 1
n+1 6= 0. Check the two conditions. (1) lim

n→∞
1

n+1 = 0Xand (2) an+1 ≤ an

since 1
n+2 < 1

n+1 (decreasing).XSo the series converges at x = 3 by the alternating series test. For x = 5: We get

∞∑
n=0

1

n + 1
.

Use the limit comparison test with
∑∞

n=0
1
n .

lim
n→∞

an
bn

= lim
n→∞

1

n + 1
· n

1

HPwrs
= 1.

Since
∑∞

n=0
1
n diverges by the p-series test (p = 1), then by the limit comparison test

∑∞
n=0

1
n+1 also diverges.

The interval of convergence is [3, 5).

e)

∞∑
n=1

n(x− 1)n

32n
. The series converges at its center a = 1. Apply the ratio test. For any x 6= 1

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)(x− 1)n+1

32(n+1)
· 32n

n(x− 1)n

∣∣∣∣ = lim
n→∞

∣∣∣∣n + 1

32n
· (x− 1)

∣∣∣∣ HPwrs
= lim

n→∞

∣∣∣ n
9n
· (x− 1)

∣∣∣ =

∣∣∣∣x− 1

9

∣∣∣∣ .
By the ratio test, the series converges if

∣∣∣ (x−1)9

∣∣∣ < 1 ⇐⇒ |x− 1| < 9 and diverges when |x− 1| > 9. The radius

of convergence is R = 9. What about the endpoints a− R = 1− 9 = −8 and a + R = 1 + 9 = 10? For x = −8:
We get

∞∑
n=1

n(1 + 8)2n

32n
=

∞∑
n=1

n(−9)
n

9n
=

∞∑
n=1

(−1)nn.

But lim
n→∞

(−1)nn DNE, so by the nth term test the series diverges. For x = 10: We get

∞∑
n=1

n(10− 1)n

9n
=

∞∑
n=1

n

and so the series diverges by the nth term test again. The interval of convergence is (−8, 10).

f)

∞∑
n=1

n!xn

(2n)!
. The series converges at its center a = 0. Apply the ratio test. For any x 6= 0

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)!xn+1

(2n + 2)!
· (2n)!

n!xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ n + 1

(2n + 1)(2n + 2)
· x
∣∣∣∣ = lim

n→∞

∣∣∣∣ 1

4n + 2
· x
∣∣∣∣ = 0 < 1.

By the ratio test, the series for all x The interval of convergence is (−∞,∞).

4. a)
∑∞

n=1
n!xn

1·3·5···(2n+1) . Use the ratio test.

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)!xn+1

1 · 3 · 5 · · · (2n + 3)
· 1 · 3 · 5 · · · (2n + 1)

n!xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)x

2n + 3

∣∣∣∣ HPwrs
= lim

n→∞

∣∣∣nx
2n

∣∣∣ = lim
n→∞

∣∣∣x
2

∣∣∣ .
By the ratio test, the series converges if |x2 | < 1 ⇐⇒ |x| < 2 and diverges when |x| > 2. The radius of convergence
is R = 2.

b)
∑∞

n=1
nnxn

n! Use the ratio test.

lim
n→∞

∣∣∣∣An+1

An

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)n+1xn+1

(n + 1)!
· n!

nnxn

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)n+1x

(n + 1)nn

∣∣∣∣
= lim

n→∞

∣∣∣∣ (n + 1)nx

nn

∣∣∣∣
= lim

n→∞

∣∣∣∣(n + 1

n

)n

· x
∣∣∣∣ = lim

n→∞

∣∣∣∣(1 +
1

n

)n

· x
∣∣∣∣ = |ex| .

By the ratio test, the series converges if |ex| < 1 ⇐⇒ |x| < 1
e . The radius of convergence is R = 1

e .
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