Riemann Sums

Recall that we have previously discussed the area problem. In its simplest form we

can state it this way:

The Area Problem. Let f be a continuous, non-negative function on the closed
interval [a,b]. Find the area bounded above by f(x), below by the x-axis, and by
the vertical lines x = a and x = b. See Figure 1.1. To solve this problem we will
need to use

Basic Area Properties (Axioms). We assume the following properties.
1. The area of a region A is a non-negative real number: Area(A) > 0.
2. If A is a subset of B, then Area(A) < Area(B).

3. If A is subdivided into two non-overlapping regions A; and Aj, then

Area(A) = Area(A1) + Area(A).
4. The area of a rectangle is b x h.

YOU TRY IT 1.1. Using the area properties above, prove that the area of any triangle is

Figure 1.3: Show A = (b x h).
(bxh) gure 1.3 3(bxh)

Nl—=

See Figure 1.3. Which area properties do you use in your proof?

YOU TRY IT 1.2. How could you use the area formula for a triangle to find the area of any
polygon? (See Figure 1.4.) What area properties are used to do this?

What about curved figures like (semi)circles. Why is the area of a circle 772
or, equivalently, the area of a semi-circle %m’z? If we can solve the general area

problem, then we will be able to prove that the area of a semi-circle is %m’z because

we know that the graph of the semi-circle of radius r is given by the continuous,
non-negative function f(x) = v/r2 — x2. In other words, a semi-circular region
satisfies the conditions outlined in the general area problem. (See Figure 1.5.)

Note: We'll solve the area problem two ways. Since the answer must be the same,
this equality will be the proof for the so-called Fundamental Theorem of Calculus.
To solve the area problem, we’ll need to use the only area formula we know. .. we

must use rectangle regions.

y = f(x)
Af
[
a b

Figure 1.1: Find the area A; under a
nonnegative continuous curve on the
interval [a, b].

Property 3 -

Figure 1.2: Properties 2 and 3.

Figure 1.4: How you can find the area
of this polygon?

I |
—r r
Figure 1.5: This semi-circle satisfies the

conditions of the area problem.
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1.1 Riemann Sums (Theory)

The presentation here is slightly different than in your text. Make sure that you
understand what all of the notation means. Again, remember what we are trying
to solve:

THE AREA PROBLEM. Let f be a continuous, non-negative function on the closed
interval [a, b]. Find the area bounded above by f(x), below by the x-axis, and by
the vertical lines x = a and x = b.

As we have just noted, since the only area formula we have have to work with
is for rectangles, we must use rectangles to approximate the area under the curve.
Here’s how we go about this approximation process.

Step 1. First subdivide or partition [a, b] by choosing points {xg, x1, ..., X, } where

a=x)<x1<Xp< - <Xp_1<xy,=>.

Figure 1.6: A partition of the interval
[a,b].

a=xg X1 X Xk_1 Xk . b=xy

Step 2. Determine the height of the kth rectangle by choosing a sample point cj in
the kth subinterval so that x;_1 < ¢x < x;. Use f(cg) as the height.

Figure 1.7: f(cx) is the height of the kth
rectangle (see the point marked with a
e on the curve).
y=f)
height
= flex)
\ I I I I
a=x X1 X Xk_1 Ck Xk ... b=2x,

Step 3. The width of the base of the kth rectangle is just x; — x;_1. We usually call
this number Axy. (See Figure 1.8.)

Figure 1.8: Axy = x; — xj_1 is the width
of the kth rectangle. So the area of the
kth rectangle is f(cx) x Axg.
y=f)
height
= f(ex)
\ T T T T
a=xp X1 X2 Xk Ck Xk ... b=2x,
—Axp—

Step 4. So using the rectangle area assumption, the area of the kth rectangle is
hxb= f(Ck) X Axk.
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Step 5. If we carry out this same process for each subinterval determined by the
partition {xg, x1,...,x, }, we get n rectangles. The area under f on [a, b] is ap-
proximately the sum of the areas of all n rectangles,

n
Area(A) & Y flcp)Axg.
k=1
[a,0].
y=f(x) |
a=xg X1 X Xk_1 Xk b=x,

DEFINITION 1.1.1 (Riemann Sum). Suppose f is defined on the interval [a,b] with partition
a=x) <x3 <x < - <x-1 < xy =b. Let Axy = x — x;_1 and let ¢, be any point
chosen so that x;_1 < ¢, < x;. Then

n

Y fle)dxg

k=1

is called a Riemann sum for f on [a, b].

Notice that in the general definition of a Riemann sum we have not assumed
that f is non-negative or that it is continuous. The definition makes sense as long
as f is defined at every point in [a, b]. Let’s work out a simple example.

EXAMPLE 1.1.2. Estimate the area under f(x) = (x — 1)3 4 1 on the interval [0,2] using the
partition points

XOIO
1
X1—§
3
x2—?
X3:2

and sample points

a=} fle)=fG)=G-1P+1=-§+1=3
2 =1 fle2) = F1) =1
=1 fles) = =8

Solution. We use Definition 1.1.1 and form the appropriate Riemann sum. First

Axy =x1—xp =

Ax2:X2—X1:

N NI NI—
|

NI® o~ O
I

NI= = NI

AX3:JC3—3C2:
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Figure 1.9: A rectangular approxima-
tion to the area under f on the interval

x=0

v = fx) T
T I
| |
c1=1/2 o FEl c3=7/4
| |
X1:1/2 X2:3/2 X3:2

Figure 1.10: A Riemann sum for f(x) =
(x —1)% 4+ 1 on the interval [0,2] using
three rectangles. The height for each
rectangle is marked with a e. Does the
approximation seem to be an under- or
overestimate of the true area?
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So

3
Area(A Zf Cr) Axy

=1
f(%)Axﬁf(l)AXz f(§)Axs
(%)() (M@)+ (G)(3)

128

The Riemann sum provides an estimate of 222 as the area under the curve. Yet
we don’t know how accurate that estimate is and we still don’t know the true area
under the curve.

Further, notice that the use of summation notation was not particularly helpful
here. If we use Riemann sums in a more systematic way, Riemann sum notation
can be very helpful. And, if we are careful about how we form such sums, we can
even say whether the sum is an over- or underestimate of the actual area under the
curve.

WEBWORK: Click to try Problems 16 through 17. Use GUEST login, if not in my course.

1.2 Regular Partitions, Upper and Lower Sums

Again let us assume that y = f(x) is a non-negative, continuous function on the
interval [a,b]. We will now take a more systematic approach to forming Riemann
sums for f on [a, ] that will allow us to make more accurate approximations to the
area under the curve. Again we proceed in a series of steps.

Step 1. Divide the interval [, b] into n equal-width subintervals. The width of

each interval will be
b—a

n

Ax =

We can express the partition points in terms of a2 and Ax.

Xo=a=a+0-Ax

X1 =a+ Ax
Xy =a+2Ax
X = a+ kAx

Xp =b=a+nAx

Equal width partitions are called regular partitions. The formula for the kth

o

point in a regular partition is

Step 2. Since f is continuous, it achieves a maximum value and a minimum value

RIEMANN SUMS, PART 1
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Figure 1.11: A regular partition of the

interval [a, b] into n subintervals each

= f(x) of length Ax = =% This means that
’ X = a+ kAx.
[ I I I I I |
Xo=4a X X2 X1 Xg Xpo1 Xn =0
—Ax — —Ax — —Ax —

on each subinterval. We use the following notation to represent these points.

‘ f (M) = maximum value of f on the kth subinterval ‘

‘ f(my) = minimum value of f on the kth subinterval ‘

These points are illustrated in Figure 1.12

Figure 1.12: On the kth subinterval the
[ maximum height f(Mj) occurs between
I the two endpoints. The minimum
f(M k) height f(my) happens to occur at the
right endpoint of the interval, m; = x;.
f(my)

°
? 3
I
|
I
I

I
|
X1 My Xk Xk—1 X = My
Ax Ax
Figure 1.12 shows that we get two different rectangles for each subinterval de-
pending on whether we choose the maximum or the minimum value of f as the

height. These are called the circumscribed and inscribed rectangles, respectively.
We see that

‘ area of the circumscribed rectangle = f(Mj)Ax ‘

‘ area of the inscribed rectangle = f(my)Ax ‘

Step 3. To obtain an approximation for the area under the curve, we form a Rie-
mann sum using either the circumscribed (upper) or inscribed (lower) rectan-
gles.

If we add up all the circumscribed rectangles for a regular partition with n
subintervals we get the upper sum for the partition:

n
Upper Riemann Sum = Upper(n) = Y f(My)Ax. (1.2)
k=1

If we add up all the inscribed rectangles for a regular partition we get the lower
sum for the partition:

n
Lower Riemann Sum = Lower(n) = Y f(m;)Ax. (1.3)
k=1

Take a moment to review all of the notation. Ok? Let’s see how these upper and
lower sums are computed in a simple case.

RIEMANN SUMS, PART 1
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EXAMPLE 1.2.1. Lety = f(x) = 1+ 1x2 on [0,2]. Determine Upper(4) and Lower(4), the

upper and lower Riemann sums for a regular partition into four subintervals.

Solution. We use the steps outlined above.

Step 1. Determine Ax. Here [a,b] = [0,2] and n =4 so
2-0

b—a 71
n 4 2

Ax =

Step 2. Determine the partition points, xj. Using (1.1)

1 k
= kAx = kl=)]==.
X =a-+kAx =0+ <2) >

(1.4)

Step 3. Take a look at the graph of f(x) = 1+ 3x? on [0,2] in Figure 1.13. Since
f is an increasing function, the maximum value of f on each subinterval occurs

at the right-hand endpoint of the interval. The right-hand endpoint of the i

interval is just x;. So

k
Mk = X = E
Consequently, the maximum value of f on the kth interval is

f(Mk)—f(I;) _1+;(§)21+’§.

Step 4. Putting this all together, the upper Riemann sum is

4 4 4 §
Upper(4) = k:Zlf(Mk)Ax = k;f (;) % N k:zl {1 i ];} %

Now use the basic summation rules and formulee to evaluate the sum.

4 k2 14 1 4
Upper(4) = 1 == — YK
pper(4) k;[+8]2 2! 62

_1 L (4(50)
_2[4(1)]+16< 6 )
31
==

The lower sum Lower(4) can be calculated in a similar way. Again, because the

function is increasing, the minimum value of f on the kth subinterval occurs at the

left-hand endpoint x_;. Using the formula in (1.4)

k—1
M = X1 = —5—

Consequently, the minimum value of f on the kth interval is

2
k-1 Lk=1\?_ | K-2i41 9 &
8 § 4

f(mk)_f<2>_1+2 )

Putting this all together, the lower Riemann sum is

Lower(4) =

k2

,_i_i

8
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0.0 0.5 1.0 1.5 2.0
Figure 1.13: The upper sum Upper(4)
for the function f(x) =1+ 1x2 on [0,2].
The maximum value of the function
occurs at the right-hand endpoint, xj
for each subinterval.

0.0 0.5 1.0 1.5 2.0
Figure 1.14: The lower sum Lower(4)
for the function f(x) =1+ 1x% on [0,2].
The minimum value of the function
occurs at the left-hand endpoint, x;_q
for each subinterval.
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Again use the basic summation rules and formulz to evaluate the sum.

4

Lok R
8 4 8

Lower(4) = } 5= %
k=1 ]
RO e

23

5

The advantage of upper and lower sums is that the true area under the curve is

trapped between their values. Upper(n) is always an overestimate and Lower(n) is
an underestimate. More precisely,

’Lower(n) < area under f < Upper(n). ‘

In this example,
2 1
Lower(4) = §3 < area under f < % = Upper(n).

Here are two questions to think about: How can we improve the estimate? Which
sum was easier to compute, the lower or the upper? Why?

Now let’s do the whole process again. This time, though we will use n subinter-
vals, without specifying what the actual value of # is. This is where the summation
notation that we have developed really comes to the rescue.

EXAMPLE 1.2.2. Lety = f(x) = 1+ 1x% on [0,2]. Determine Upper(n) and Lower(1), the
upper and lower Riemann sums for a regular partition into n subintervals.

Solution.

Step 1. Determine Ax. Here [a,b] = [0,2] so

Step 2. Determine the partition points, x;. Using (1.1)
2 2k
Xk—a+kAx—O+k(n> —; (15)

Step 3. Since f is an increasing function, the maximum value of f on each subin-
terval occurs at the right-hand endpoint of the interval. So My = xj. So

M, =x, = —.
k k n

Consequently, the maximum value of f on the kth interval is

2k 1 /2k\? 4> 2k2
s = £ (B) =10 L () —1a -1 2
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%igure 1.15: The upper sum U;per(n)
for the function f(x) = 1+ 1x on
[0,2]. As n increases, Upper(n) better
approximates the area under the curve.
(Compare to Figure 1.13.)
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Putting this all together, the upper Riemann sum is

" k%12 2 )
Upper(n) = ZkaAx—Z 1+= —:—21—1— Zk
k=1 nelrn 5
2 nn+1)2n+1)
= 2+ 4 ( |
2 (2n24+3n+1
—pp (TS
T3 n? )
[t 2,2
N 3 n  3n?
0,2 2
3 n 32

The lower sum Lower(n) can be calculated in a similar way. The minimum
value of f on the kth subinterval occurs at the left-hand endpoint:
2(k—1)

-
The minimum value of f on the kth interval is

myg = X1 =

Co(20k—=1)\ 1 /2(k—1)\* 4k -2k+1) 2k —2k+1)
f(mk)—f( " )—1+2( ” =1+ = =1+ o
Putting this all together, the lower Riemann sum is

2z L 2(k* —2k+1)7 2
Lower(n)=2f(mk)Ax:Z[1+%};
k=1 k=1
n n
:321+i32(k2—2k+1)
= T ==
2 4 8 & 4
=M+ =Y r-=Ykk+=Y1
n n3k=21 n3k=21 n3k=21
B 4 [n(n+1)2n+1) 8 [n(n+1) 4
—2+—3 6 3 5 +$[(1’1)1]
42, 2] 4, 4], 4
B 3 n 3n2 n n2| n?
0.2, 2
3 n 3n?
We know that

Lower(n) < area under f < Upper(n).

The formulze for Upper(n) and Lower(n) are valid for all positive integers n. We
expect that as 7 increases the approximations improve. In this case, taking limits

lim Lower(n) < area under f < lim Upper(n),
n—oo

n—oo
equivalently,
. 10 2 2 . 10 2 2
nh_r)r;o [g—a—i—m} Sareaunderfgnll_I)n [3 + — +3n2}
or

1 1
?0 < area under f < ?0

The only way this can happen is if

1
area under f = ?0
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0‘.0 o.‘5 1‘.0 1}5 2.0
Figure 1.16: The lower sum Lower(n)
for the function f(x) =1+ $x% on [0,2].
The lower sum is an underestimate of
the area under f.

Foigure 1.17: The difference betV\ZIeen the
upper sum Upper(n) for the function
f(x) = 14 2% on [0,2] and the lower
sum Lower(n) (shaded). The true area
lies between the two.
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Tnke-home Message. This is great! We have managed to determine the area under
an actual curve by using approximations by lower and upper Riemann sums. The
approximations improve as n increases. By taking limits we hone in on the precise
area. This is more carefully described in Theorem 1.3.1 at the beginning of the next
section.

Finally, again ask yourself which of the two sums was easier to calculate? Why
was it easier? Shortly we will take advantage of this situation.
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