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1.5 Two Methods to Evaluate Definite Integrals

At the moment we have two methods to evaluate
R b

a f (x) dx.

1. Definition 1.4.1 says that we we can evaluate
R b

a f (x) dx as a limit, most conve-
niently as limn!• Right(n). This is what you did in you try it 1.8 and what
we have carried out in other problems.

2. On the other hand, we can use Definition 1.4.4 and ask whether
R b

a f (x) dx
represents some well-known area. If so, we can use the corresponding area
formula to evaluate the integral. Below you will find several such examples.

EXAMPLE 1.5.1. Determine
Z 7

3
2 dx. (See Figure 1.22.)
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Figure 1.22: The area under f (x) = 2 is
a rectangle.

Solution. The area under the graph of the constant function f (x) = 2 is a rectan-
gle. So Z 7

3
2 dx = Area(rectangle) = b ⇥ h = 4 ⇥ 2 = 8.

EXAMPLE 1.5.2. Determine
Z 5

1
2x + 1 dx. (See Figure 1.23.)
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Figure 1.23: The area under f (x) =
2x + 1 is a trapezoid.

Solution. The area under the linear function f (x) = 2x + 1 is a trapezoid (which
can be split into a rectangle and triangle if you have forgotten the area formula for
a trapezoid).

Z 5

1
2x + 1 dx = Area(trapezoid) = 1

2 (b1 + b2)⇥ h = 1
2 (3 + 11)⇥ 4 = 28.

Or Z 5

1
2x + 1 dx = Area(triangle + rectangle) = 1

2 (4)(8) + (4)(3) = 28.

EXAMPLE 1.5.3. Determine
Z 3

0

p
9 � x2 dx.

Solution. The area under f (x) =
p

9 � x2 is a quarter-circle of radius 3. So
Z 3

0

p
9 � x2 dx = Area(quarter-circle) = 1

4 (pr2) = 9p
4 .
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Figure 1.24: The area under f (x) =p
9 � x2 is a quarter-circle.

EXAMPLE 1.5.4. Determine
Z 2p

0
sin x dx.
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Figure 1.25: The net area under f (x) =
sin x is 0.

Solution. The area above the x-axis in Figure 1.25 is the same as the area below
the axis. Thus, the net area is 0 which means

Z 2p

0
sin x dx = 0.

EXAMPLE 1.5.5. Change the interval in the previous problem: Determine
Z p

0
sin x dx.
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Figure 1.26: We don’t yet know how
to find the area under f (x) = sin x on
[0, p].
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Solution. Now we cannot take advantage of symmetry and we do not have an
‘area formula’ for the area under the sine function. We would need to use Rie-
mann sums. You can check that

Right(n) =
n

Â
k=1

sin
✓

kp

n

◆
· p

n
.

However, we don’t have a ‘summation formula’ to simplify this sum. For the time
being, we are stuck!

EXAMPLE 1.5.6. Determine
Z 1

�1
�
p

1 � x2 dx.
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Figure 1.27: The area between f (x) =
�
p

1 � x2 and the x-axis is a semi-circle
below the axis.

Solution. The area under f (x) = �
p

1 � x2 is a unit semi-circle below the x-axis.
So Z 1

�1
�
p

1 � x2 dx = �Area(semi-circle) = � 1
2 (pr2) = �p

2 .

Take-home Message. Example 1.5.5 points out that even though the definite integral
‘solves’ the area problem, we must still be able to evaluate the Riemann sums
involved. If the region is not a familiar one and we can’t determine

lim
all Dxk ! 0

n

Â
k=1

f (ck)Dxk,

then we are stuck in trying to evaluate
Z b

a
f (x) dx. In other words, we must find

yet another method to evaluate definite integrals.

1.6 Useful Properties of the Definite Integrals

The definition of the definite integral of f on [a, b] requires that a < b. However, it
is convenient to extend this definition to the two other cases: a = b and a > b. In
the first of these cases, when a = b the geometry tells us that the area should be 0.
(See Figure 1.28.) When a > b we can think of the Riemann sums taking place in
reverse going from right to left: Dx = b�a

n is now negative since a > b so the terms
in the Riemann sum all change sign, so the integral changes sign when the limits
are reversed. These two observations are summarized in the following definition.
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Figure 1.28: The area below a single
point is 0. Equivalently,

R a
a f (x) dx = 0.

DEFINITION 1.6.1. We extend the definition of the definite integral as follows:

1. If f is defined at a, then
Z a

a
f (x) dx = 0.

2. If f is integrable on [a, b], then
Z a

b
f (x) dx = �

Z b

a
f (x) dx.

EXAMPLE 1.6.2. In Example 1.4.3, we saw that
Z 2

�1

x
2

dx = �3 so reversing the limits and

using part 2 of Definition 1.6.1 we obtain
Z �1

2

x
2

dx = 3. Using part 1 of Definition 1.6.1 we

find
Z 1

1
ex dx = 0.
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We can generalize the result in Example 1.5.1. Observe that if f (x) = k is a
constant function, then the area it determines is a rectangle of height k and width
b � a (see Figure 1.29), so

Z b

a
k dx = k(b � a).

a b
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Figure 1.29: The area formed by a
constant function is a rectangle.

Since we have assumed that we can compute areas of non-overlapping re-
gions by summing the areas of the individual pieces (see Basic Area Property 3

on page 1) as in Figure 1.30. Consequently,

THEOREM 1.6.3 (Additivity). If f is integrable on the three closed intervals determined by a,
b, and c, then

Z b

a
f (x) dx +

Z c

b
f (x) dx =

Z c

a
f (x) dx.

Note: The order of the points does not matter.
a b c
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Figure 1.30: If f is integrable on [a, b]
and [b, c], then f is integrable on [a, c].EXAMPLE 1.6.4. Suppose that

Z 12

0
f (x) dx = 25 and

Z 8

0
f (x) dx = 14, determine

Z 12

8
f (x) dx.

Solution. From Theorem 1.6.3 we have
Z 8

0
f (x) dx +

Z 12

8
f (x) dx =

Z 12

0
f (x) dx. Substitut-

ing the given values we get

14 +
Z 12

8
f (x) dx = 25 so, it follows that

Z 12

8
f (x) dx = 11.

EXAMPLE 1.6.5. Determine
Z 1

�2
|x| dx.

Solution. This time we use a bit of geometry. From Figure 1.31 we see that we can di-
vide the the region between the graph and the function into two triangles. So using Theo-
rem 1.6.3 we have
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Figure 1.31: To determine
R 1
�2 |x| dx,

divide the the region between the graph
and the function into two triangles.

Z 1

�2
|x| dx =

Z 0

�2
|x| dx +

Z 1

0
|x| dx = 1

2 (2)(2) +
1
2 (1)(1) = 2.5

Because a definite integral is the limit of a (Riemann) sum, it has both the dis-
tributive and associative properties:

n

Â
k=1

k f (ck)Dxk = k
n

Â
k=1

f (ck)Dxk

and
n

Â
k=1

[ f (ck) + g(ck)]Dxk =
n

Â
k=1

f (ck)Dxk +
n

Â
k=1

g(ck)Dxk.

Taking limits, we see

THEOREM 1.6.6 (Linearity). If f and g are integrable on [a, b] and k is any constant, then k f (x)
and f (x)± g(x) are integrable on [a, b]. Further,

1.
Z b

a
k f (x) dx = k

Z b

a
f (x) dx.

2.
Z b

a
f (x)± g(x) dx =

Z b

a
f (x) dx ±

Z b

a
g(x) dx.
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EXAMPLE 1.6.7. Suppose that
Z 12

0
f (x) dx = 25 and

Z 12

0
g(x) = �4. Evaluate each of the

following definite integrals.

(a)
Z 12

0
3 f (x) dx (b)

Z 12

0
2 f (x)� 9g(x) dx (c)

Z 0

12
3 � g(x) dx (d)

Z 12

12
x2 f (x) dx

Solution. Use Theorem 1.6.6 for part (a).

(a)
Z 12

0
3 f (x) dx = 3

Z 12

0
f (x) dx = 3(25) = 75.

(b) Use both parts of Theorem 1.6.6
Z 12

0
2 f (x)� 9g(x) dx =

Z 12

0
2 f (x) dx �

Z 12

0
9g(x) dx

= 2
Z 12

0
f (x) dx � 9

Z 12

0
g(x) dx = 2(25)� 9(�4) = 86.

(c) This time use both Definition 1.6.1 and Theorem 1.6.6 as well as our observa-
tion about constant functions.

Z 0

12
3 � g(x) dx = �

Z 12

0
3 � g(x) dx

= �
Z 12

0
3 dx �

Z 12

0
g(x) dx = (12)(3)� 4 = 32.

(d) This time notice that both endpoints are equal, so
Z 12

12
x2 f (x) dx = 0.

Another important property of definite integrals is that they preserve inequali-
ties.

THEOREM 1.6.8. Assume that f and g are both integrable on [a, b].

1. If f (x) � 0 for all x in [a, b], then

Z b

a
f (x) dx � 0.

2. More generally, if f (x) � g(x) for all x in [a, b], then

Z b

a
f (x) dx �

Z b

a
g(x) dx.
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Figure 1.32: If f (x) � g(x) on [a, b] and
both are integrable, then

R b
a f (x) dx �

R b
a g(x) dx.

While we won’t give proofs of either part of Theorem 1.6.8, the intuition is clear.
For part 1, Since f (x) � 0 on the interval, then for any point ck in [a, b], we have
f (ck) � 0. So

n

Â
k=1

f (ck)Dxk �
n

Â
k=1

0Dxk = 0.

Taking limits gives
R b

a f (x) dx � 0. For part 2, since f (x) � g(x), then f (x) �
g(x) � 0 for all x in [a, b]. So by part 1,

Z b

a
f (x)� g(x) dx � 0

and so by the linearity theorem (Theorem 1.6.6) we have
Z b

a
f (x) dx �

Z b

a
g(x) dx � 0 )

Z b

a
f (x) dx �

Z b

a
g(x) dx.

YOU TRY IT 1.9. Determine
Z 4

�5
f (x) dx for the function f in Figure 1.32.

�5 �3 3 4

�2

2

3

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.......
.......
.......
.......
.......
........
........
........
........
.........
.........
..........
...........
.............
.................

...............................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
....

.............

.............

.............

.......

......

.......

......

.......

......

f (x)

Figure 1.33: Find the area between f
and the x-axis.

answertoyoutryit1.9.9p
2�1.

webwork: Click to try Problems 40 through 43. Use guest login, if not in my course.



The Fundamental Theorems of Calculus

2.1 The Fundamental Theorem of Calculus, Part II

Recall the Take-home Message we mentioned earlier. Example 1.5.5 points out that
even though the definite integral ‘solves’ the area problem, we must still be able
to evaluate the Riemann sums involved. If the region is not a familiar one and we
can’t determine

lim
all Dxk ! 0

n

Â
k=1

f (ck)Dxk,

then we are stuck in trying to evaluate
Z b

a
f (x) dx. In other words, we must find

another method to evaluate definite integrals. We now make the connection between
antiderivatives and definite integrals. To do this, we will need to use the Mean
Value Theorem in the following form:

THEOREM 2.1.1 (MVT: The Mean Value Theorem). Assume that

1. F is continuous on the closed interval [xk�1, xk];

2. F is differentiable on the open interval (xk�1, xk);

Then there is some point ck between xk�1 and xk so that

F0(ck) =
F(xk)� F(xk�1)

xk � xk�1
.

This is equivalent to saying F(xk)� F(xk�1) = F0(ck) · (xk � xk�1). Or using the notation
of Riemann sums,

F(xk)� F(xk�1) = F0(ck)Dxk.

THEOREM 2.1.2 (FTC Part II). Assume that f is continuous on [a, b] and that F is an antideriva-
tive of f on [a, b]. Then

Z b

a
f (x) dx = F(x)

���
b

a
= F(b)� F(a).

Notes: We will cover what your text
calls Part I of the FTC shortly.

Also, recall: F is an antiderivative of f
means that F0 = f on [a, b].

Before we do the proof, let’s look at an example so you can appreciate what this
theorem says.

EXAMPLE 2.1.3. Let f (x) = x2 on [0, 2]. An antiderivative is F(x) = 1
3 x3. So Theorem 2.1.2

says
Z 2

0
x2 dx =

1
3

x3
���
2

0
=

1
3
(2)3 � 1

3
(0)3 =

8
3

.

Wow! That’s a heck of a lot simpler than doing a limit of Riemann sums. Now to ‘pay’
for this convenience, we need to spend a few minutes working through the proof of the
theorem. But it will pay big dividends.


