Math 131 Homework: Day 8

My Office Hours: M & W 12:30-2:00, Tu 2:30-4:00, & F 1:15-2:30 or by appointment. Math Intern Sun: 12-6pm; M 3-10pm; Tu
2-6, 7-1pm; W and Th: 5-10 pm in Lansing 310. Website: http://math.hws.edu/~mitchell/Math131S13/index.html.

¥ Practice and Reading

1. a) Reread and review Section 5.4 on average values, Read Section 5.5 on Substitution. This is very important and we
will discuss it on Monday.

b) # Average values: Page 354 #19, 21, 23, 25.
c) Read about definite integrals of odd and even functions (pages 349-350). Then do page 354-55 #7, 9, 13, and 39.

d) MVTI: Page 355 #31. First find fae and the point ¢ where f(¢) = fave.

ww Short Hand In for Monday and WeBWorK Day08 (due Monday night)
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2. Use the FTC to find F'(z) if F(z) = f 8sin(mt?) dt. Note the limits!
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3. Suppose that ff}2 g(t)dt = z?Inz. Evaluate g(1) and explain your answer. Hint: Apply FTC.
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4. a) Breathing is cyclic. From the beginning of inhalation to the end of exhalation takes about 4s. The flow rate of air
into the lungs is modeled by f(t) = %sin(%t) liters/s. Find the average flow rate on the interval [2, 4] seconds.
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b) Extra credit. The flow rate f(t) is the rate of change in the volume V (t) of air in the lungs. Find the net change
in the volume of air in the lungs from time ¢t = 2 to t = 4. What is going on physically during this period?
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5. OK, the FTC says that if A(z) = [*, f(t)dt, then A'(z) = f(z). But also remember A(z) is just the net area between f
and the z axis on the interval from —2 to endpoint z.

a) At what point(s), if any, does A have a local max? S\ A ‘g' Swo iz ey W * +o -
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b) On what interval(s) is A decreasing? Explain briefly.
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J(t) ) Is A(0) a positive number or negative? Explain.
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\1/ 3 - Think about net area and the limits of the integral.
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6. Page 355 #36. First find fave and then the point ¢ where f(c) = fave- Give both the exact value of c and a dec1mal

approximation. &
= b . S* 4 Ll \\ - L u4
A Ao = o = ®r =

’fa = :? = pa S&&K)M* &\ ~ 3 \ S

A el
Need ¢ S0 el
flost-F > 1=t o e g xnes

SawuL

e Y
7. Determine - [/1 (t2+1)dt+/100 n(t? + 1)dt} B[ & ﬂM(t DAL — & L (t H)]
X

dx



