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Applications of Riemann Sums and the FTC: Net Distance Travelled

Suppose we know that the velocity of an object traveling along a line (think car
on a straight highway) is given by a continuous function v(t), where t represents
time on the interval [a, b]. How might we determine the net distance the object

Z When first taking calculus it is easy
to confuse the integration process
(with its Riemann sums) with simple
‘antidifferentiation.’ While the First
Fundamental Theorem connects these
two, they are not the same thing. Most
important, though, the determination of
many quantities can be approximated
(interpreted) as Riemann sums and
hence evaluated as definite integrals
even though it is not obvious at the
outset that antidifferention should be
involved. The Riemann sum part turns
out to be critical.

has travelled? Well, we know that if the velocity were constant, then

distance = rate ⇥ time.

Observe: Distance has been expressed as product, much the way we assumed
earlier that the area of a rectangle could be expressed as a product:

area of a rectangle = height ⇥ base.

We can extend this analogy to Riemann sums and area under curves. While the
velocity is not constant on long intervals since the velocity is continuous it is nearly
constant on short time intervals. So divide the time interval using a regular partition
{to, t1, t2, . . . , tn} of n subintervals of length Dt. Next, pick any point in the kth
subinterval (we might as well choose the right-hand endpoint tk for convenience)
and evaluate the velocity v(tk) there. Then the distance traveled during the kth
time interval approximated as

distance = rate ⇥ time ⇡ v(tk)⇥ Dt.

Since the net distance travelled is the sum of the distances traveled on each subin-
terval which is approximately

Net Distance ⇡
n

Â
k=1

v(tk)⇥ Dt.

The approximation is improved by letting n get large and taking a limit.

Net Distance = lim
n!•

n

Â
k=1

v(tk)⇥ Dt =
Z b

a
v(t) dt. (1.13)

Since v was assumed to be continuous, then we know that the limit exists and can
be evaluated as a definite integral using antidifferentiation assuming we know
an appropriate antiderivative. Finally, think about how we interpreted definite
integrals geometrically: as (net) area under a curve. What we have just shown is
that the net distance travelled over the time interval [a, b] is just the net area under
the velocity curve. That’s not obvious at first.

What’s your point? The key point here is that we were able to use a ‘divide and
conquer’ process to determine the displacement. Let’s list it as a series of steps.

• We subdivided the quantity into small bits,

• and we were able to approximate the each bit as a product.

• When we reassembled (summed) the bits, we found we had a Riemann sum.

• Once we had a Riemann sum we take a limit as the number of bits got large.

• The limit was a definite integral

• which we could evaluate easily (if we know an antiderivative) using the Funda-
mental Theorem of Calculus.

We will use this process repeatedly over the next few weeks.
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Another Application of Definite Integrals: Average Value

Suppose that we want to know the average temperature for February 27, 2003 in
Geneva How might we find it? Well, we could take the n = 24 hourly temperature
recordings, add them together, and then divide by 24 might as we might do to find
any average. Is the average 19.7 as listed in the table? What ‘average’ is that?

Time Temp

1:00 12

2:00 13

3:00 13

4:00 12

5:00 11

6:00 12

7:00 13

8:00 18

9:00 21

10:00 24

11:00 26

12:00 28

13:00 28

14:00 29

15:00 29

16:00 27

17:00 25

18:00 24

19:00 21

20:00 19

21:00 17

22:00 18

23:00 17

24:00 16

Ave 19.7
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Figure 1.49: A graph of the temperature
on February 27, 2003 using the data to
the right.

The average of 19.7 ‘privileges’ those recordings made on the hour. We could
get a better estimate if we recorded temperatures every half-hour, or every 5 min-
utes, or every minute, or perhaps every second. Sounds like a partition! The more
recordings we use, the better the ‘average.’ Let’s generalize the problem.

The Average Value Problem: Let f be a continuous function on the closed interval
[a, b]. Find the average value of f on [a, b].

SOLUTION. Use the process we outlined. But how do we subdivide an average and
make it product? As usual, start by dividing [a, b] into n equal subintervals with
partition points {x0, x1, . . . , xn}. Then, as we suggested above,

Average of f ⇡ f (x1) + f (x2) + · · ·+ f (xn)
n

=
n

Â
k=1

f (xk) ·
1
n

. (1.14)

The summation looks almost like a Riemann sum except we now have 1
n instead of

Dx. But hold on!
Dx =

b � a
n

so
1
n
=

b � a
n

· 1
b � a

=
Dx

b � a
.

Substituting this back in equation (1.14) gives

Average of f ⇡
n

Â
k=1

f (xk) ·
Dx

b � a
=

1
b � a

n

Â
k=1

f (xk)Dx. (1.15)

Now we do have a Riemann sum in (1.15). The best approximation occurs when we
take a limit as the number of evaluation points n ! •. In other words

Average of f = lim
n!•

1
b � a

n

Â
k=1

f (xk)Dx =
1

b � a

Z b

a
f (x) dx. (1.16)


