Math 131 Day 17

My Office Hours: M & W 12:30-2:00, Tu 2:30-4:00, & F 1:15-2:30 or by appointment. Math Intern Sun: 12-6pm; M 3-10pm; Tu 2-6, 7-1pm; W and Th: 5-10 pm in Lansing 310. Website: http://math.hws.edu/~mitchell/Math131S13/index.html.

Today we will discuss arc length and finish it next time. Review 6.4 on Volume by Shells as needed. and read Section 6.5. Concentrate on Examples 1 through 4. Begin Section 6.6—we will cover only lifting problems: See Examples 2-4.

- 1. Volume practice: Try page 412ff #27, 29, 31, 35, 39.
- **2.** Show that the exact arc length of y = f(x) = x on [0, 1] is $\sqrt{2}$.
- **3.** Show that the exact arc length of y = 2 3x on [-2,1] is $3\sqrt{10}$. Since this curve is a straight line segment, check your answer by using the distance formula!
- **4.** Arc Length practice: Page 418 #3, 5, 7, 9.

Hand In Monday

Possible answers: $\pi \ln 9$, $2\pi \ln 17$, $\pi \ln 17$, 2π , 4π , $1 + \sqrt{2}$, $1 - \sqrt{2}$, $\ln(1 + \sqrt{2})$, Yes, $\frac{2}{27}(10^{3/2} - 1)$, No, $\frac{1}{4}\ln(-4 + \sqrt{17})$, 511/9, 1022/27, 1024/27

- 1. Do by shells: A small canal buoy is formed by taking the region in the first quadrant bounded by the y-axis, the parabola $y = 2x^2$, and the line y = 5 3x and rotating it about the y-axis. (Units are feet.) Find the volume of this buoy.
- 2. The region bounded by the curves $y = \frac{1}{1+x^2}$, the y-axis, x = 4, and the x-axis is revolved around y-axis. Find the volume. One method is easier.
- **3.** Find the length of $f(x) = 2x^{3/2} + 1$ on the interval [0, 7]. (Use a *u*-substitution.)
- **4.** Find the arc length of $f(x) = \ln \sec x$ on $[0, \pi/4]$. (Use a trig id.) This is a WeBWork Day 17 problem.
- 5. Set up the arc length integral for $y = f(x) = x^2$ on [0, 2]. Can you do the integration?
- **0.** Remember that there is also a new WeBWorK assignment set Day17. And also remember that set Day16 closes SATURDAY evening.

Math 131 Day 17 Quiz: Name:

1. Rotation about the x-axis. Let R be the entire region enclosed by $y = x^2$ and $y = 2 - x^2$ in the upper half-plane. Rotate R about the x-axis. The resulting volume is given by:

a)
$$\pi \int_{-1}^{1} (x^2)^2 dx - \pi \int_{-1}^{1} (2 - x^2)^2 dx$$
 b) $\pi \int_{0}^{1} (2 - x^2)^2 dx - \pi \int_{0}^{1} (x^2)^2 dx$

b)
$$\pi \int_0^1 (2-x^2)^2 dx - \pi \int_0^1 (x^2)^2 dx$$

c)
$$\pi \int_{-1}^{1} (2-x^2)^2 dx + \pi \int_{-1}^{1} (x^2)^2 dx$$

c)
$$\pi \int_{-1}^{1} (2-x^2)^2 dx + \pi \int_{-1}^{1} (x^2)^2 dx$$
 d) $\pi \int_{-1}^{1} (2-x^2)^2 dx - \pi \int_{-1}^{1} (x^2)^2 dx$

e)
$$\pi \int_0^1 (\sqrt{y})^2 dy + \pi \int_1^2 (\sqrt{2-y})^2 dy$$

f) None of these

2. Rotation about the x-axis. Let S be the region enclosed by the x-axis, $y = \sqrt{x}$, and y = 2 - x. The volume generated by revolving S about the x-axis is:

a)
$$\pi \int_0^1 (\sqrt{x})^2 dx - \pi \int_1^2 (2-x)^2 dx$$
 b) $2\pi \int_0^1 x(2-x) dx - 2\pi \int_0^1 x\sqrt{x} dx$

b)
$$2\pi \int_0^1 x(2-x) dx - 2\pi \int_0^1 x\sqrt{x} dx$$

c)
$$\pi \int_0^1 (\sqrt{x})^2 dx + \pi \int_1^2 (2-x)^2 dx$$
 d) $\pi \int_0^1 (2-y)^2 - (y^2)^2 dy$

d)
$$\pi \int_0^1 (2-y)^2 - (y^2)^2 dy$$

e)
$$\pi \int_{0}^{2} (\sqrt{x})^{2} dx - \pi \int_{1}^{2} (2-x)^{2} dx$$
 f) None of these

3. Rotation about the y-axis. Let T be the region enclosed by the y-axis, $y = \sqrt{x}$, and y = 2 - x (a different region than in Problem 2). The volume generated by revolving T about the y-axis is:

a)
$$\pi \int_0^2 (y^2)^2 dy - \pi \int_0^2 (2-y)^2 dy$$

a)
$$\pi \int_0^2 (y^2)^2 dy - \pi \int_0^2 (2-y)^2 dy$$
 b) $2\pi \int_0^1 x(2-x)^2 dx - 2\pi \int_0^1 x (\sqrt{x})^2 dx$

c)
$$\pi \int_0^1 (\sqrt{x})^2 dx + \pi \int_1^2 (2-x)^2 dx$$
 d) $\pi \int_0^1 (2-y)^2 dy + \pi \int_1^2 (y^2)^2 dy$

d)
$$\pi \int_0^1 (2-y)^2 dy + \pi \int_1^2 (y^2)^2 dy$$

e)
$$2\pi \int_0^1 x(2-x) dx - 2\pi \int_0^1 x(\sqrt{x}) dx$$

f) None of these

4. Rotation about the y-axis. Let U be the region enclosed by the y-axis, the x-axis, y = x - 2, and y = 4 - x. The volume generated by revolving U about the y-axis is:

a)
$$\pi \int_0^1 (y-2)^2 dy + \pi \int_1^4 (4-y)^2 dy$$

a)
$$\pi \int_0^1 (y-2)^2 dy + \pi \int_1^4 (4-y)^2 dy$$
 b) $2\pi \int_0^3 x(4-x)^2 dx - 2\pi \int_2^3 x(x-2)^2 dx$

c)
$$2\pi \int_0^4 x(4-x) dx - 2\pi \int_2^3 x(x-2) dx$$
 d) a and c

f) None of these